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Preface

In this report the Institutes of Physics of the Universität Leipzig present their scientific
activities and major achievements in the year 2003.

In July the DFG ’Forschergruppe’ (Research Group) 522 (speaker: Prof. Dr. Marius
Grundmann, www.uni-leipzig.de/∼for522) Architecture of nano- and micro-dimensional
building blocks took up work. Physicists, chemists, mineralogists and mathematicians
jointly research on three-dimensionally designed nanostructures, such as whiskers/wires,
scrolls and spirals. Four projects are at our faculty, two at the Faculty of Chemistry and
Mineralogy of the University of Leipzig, one project is at the Leibniz-Institute for Surface
Modification (IOM), Leipzig and one at the Max-Planck-Institute for Mathematics in the
Natural Sciences (MPI-MiS), Leipzig.

The group ’Physics of Interfaces’ (head: Prof. Dr. J. Kärger) coordinates the EC-
sponsored project TROCAT in which nine groups from five countries are jointly exploring
the interrelation between molecular diffusion and conversion in heterogeneous catalysis.
These activities will be continued within a Network of Excellence of the 6th frame pro-
gram of the EC (INSIDE-PORES). With special focus on diffusion in zeolites Prof. Kärger
and his team initiated an international (British, French, German) research group (”Inter-
nationale Forschergruppe”) jointly sponsored by EPSR, CNRS and DFG. The activities
of this collaboration will be of particular benefit for the International Research Train-
ing Group (’Europäisches Graduiertenkolleg’) dedicated to ’Diffusion in Porous Media’,
which starts to operate in summer term 2004 comprising groups from our institute, from
the institutes of Theoretical Physics and of Chemical Technology (Faculty of Chemistry
and Mineralogy) together with colleagues of the universities of Amsterdam, Delft and
Eindhoven. Prof. Kärger and his group highly appreciates the presence of Prof. Douglas
Morris Ruthven who received in 2002 the Humboldt Research Award.

The research team of Prof. Kremer is defining at the moment new activities after
the leave of three staff members (Prof. Grande, who retired, Prof. Stannarius, Prof.
Papadakis). In the nearer future it is planned to strengthen the activities in the field of
biophysics and biotechnology. In the course of this a large research project within the
’Sächsischen Biotechnologieinitiative’ was prolonged. Furthermore, against tough compe-
tition, the team of Prof. Kremer successfully applied for an extended grant within a newly
established DFG-Schwerpunktprogramm ’Nano- and Microfluidics: From the molecular
motion to macroscopic flow’.

The BMBF ’Nachwuchsgruppe’ (Young Research Team) Nano-Spintronics, lead by Dr.
Heidemarie Schmidt (www.uni-leipzig.de/∼nse), started its work in July 2003 and has in
the meantime already succeeded with the realization of room temperature ferromagnetic
ZnO doped with transition metals.
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18 1. PREFACE

The research performed at the Institute for Theoretical Physics covers a wide range
fields. We would like to mention the following papers of which we think that they deserve
particular attention:

The ’Habilitationsschrift’ of our colleague Olaf Richter who deceased in 2004:
Physically reasonable solutions to the Ernst equation and their twistor theory.

C. Landim, J. Quastel, M. Salmhofer, H-T. Yau, Superdiffusivity of Asymmetric Exclu-
sion Process, in Dimensions One and Two, Communications in Mathematical Physics
244 (2004) 455-481

S. Derkachov, D. Karakhanyan and R. Kirschner, Universal R operator with Jordanian de-
formation of conformal symmetry, Nucl. Phys. B 681 (2004) 295, [arXiv:nlin.si/0310019]

M. Brede, U. Behn, Patterns in randomly evolving networks: Idiotypic networks, Phys.
Rev. E 67, 031920-1/18 (2003).

M. Bachmann, W. Janke, Multicanonical Chain Growth Algorithm, Phys. Rev. Lett. 91
(2003) 208105-1–4

Prof. Dr. Ralf Stannarius received a call from the University of Magdeburg, where he
took over a chair (C4-position) for non-linear physics. Prof. Dr. Christine Papadakis
received a call from the Technical University of Munich for a C3-professorship at the
chair of Experimental Physics IV (Prof. Dr. Winfried Petry). We wish both all the best
in their new positions.

Our colleague for many years Dr. Bernd Rheinländer has been appointed as extraordi-
nary professor at our faculty. His initiative and achievements in the field of ellipsometry
are the basis of many exciting results. Dr. Andreas Pöppl has been appointed extraor-
dinary professor for his achievements and excellence in the field of electron paramagnetic
resonance.

We are grateful to many funding agencies which are acknowledged in the individ-
ual contributions. We appreciate their support which is essential for our work. We like
to thank the University for generously supporting us in the framework of the ’HbfG-
Verfahren’ with a new helium liquifier, to be installed in the fall of 2004, and equipment
for advanced characterization of optoelectronic devices.

Leipzig, April 2004

F. Kremer
M. Grundmann

K. Sibold
Directors
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Priv.-Doz. Dr. Wolfgang Tröger
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Prof. Dr. Georg Völkel
Dr. habil. Horst Braeter
Dr. André Pampel
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Institute for Experimental Physics I

3.1 Physics of Anisotropic Fluids

3.1.1 Introduction

The year 2003 was a year of changes. In April Ralf Stannarius left the group to take over
a chair for experimental physics at the University of Magdeburg. In September Chris-
tine Papadakis started with her professorship at the TU Munich. The members of the
old team in Leipzig wish both all the best in their new positions. The research in the
classical topics (molecular dynamics as studied by broadband dielectric spectroscopy and
time-resolved Fourier Transform-Spectroscopy) developed well. Additionally new activi-
ties have emerged. The optical tweezer experiments are in good progress and routinely it
is possible now to measure the viscoelastic properties of single chains of DNA. This open
new perspectives for instance to study DNA protein interaction in great detail on a single
molecule level. Concerning the funding of our research in 2004 we are in a comfortable po-
sition: Two major grants were approved one to continue the single molecule experiments
with optical tweezers and one within the DFG-Schwerpunkt 1104: Nano- and microflu-
idics: From the molecular motion to the continuous flow. Two further applications are in
preparation. This provides excellent support and strong encouragement for our research.

Friedrich Kremer
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3.1.2 New developments in the preparation of nanometric thin
films

F. Kremer, A. Serghei

This project aims to develop new methods to prepare nanometric thin layers, which
would enable one to investigate the influence of confinement on the molecular dynamics
of thin polymeric films. Additionally, the preparation should provide an easy way to ad-
just the interactions at the interfaces, which will allow us to emphasize their role in the
dynamics under confinement. One approach to be followed is to use silica nano-colloids
as spacers between two flat conductive electrodes (silicon wafers). This procedure starts
with the preparation of an empty condenser with a well-defined separation between the
electrodes in a nanometric range. After annealing, the measurement of the capacity (of
the empty condenser) provides an additional way to control the thickness. The polymer
is filled by capillarity, the filling factor being easily estimated from the capacity measure-
ment of the filled condenser. Our first results using this method are presented in Fig. 1,
for polyisoprene bulk (using 50µm glass fibers) and thin films (450 nm and 50 nm colloids
as spacers). As expected, two relaxation processes are observed: the segmental and the
normal mode, corresponding to the segmental and the chain end-to-end fluctuations. In
agreement with our previous study [1] both relaxation processes are not shifted with de-
creasing the film thickness down to a thickness of 50 nm. Another approach we want to
develop is to use nanostructures as spacers between two silicon wafers. This procedure
reduces itself essentially to selective etching of a SiO layer (deposited by evaporation on a
silicon wafer), which enables the formation of a nanometric pattern (array of steps) with
a well-defined height.

Fig. 1: The temperature dependence of the normalized dielectric loss at 770 Hz for poly-
isoprene (Mw=5000) bulk and thin films, as indicated.

[1] A. Serghei, F. Kremer, Phys. Rev. Lett. 91, 165702 (2003).

* The underlined author is the principal investigator of the project.
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3.1.3 Fluctuation of terminal subchains in thin films of polyiso-
prene

F. Kremer, A. Serghei

A novel relaxation process (confinement-induced mode) was detected in thin cis-1,4-
polyisoprene films (Fig. 1a) investigated by Broadband Dielectric Spectroscopy. Addi-
tionally to the segmental and the normal mode, originating from the segmental and chain
end-to-end fluctuations, the confinement-inducted mode shows up when the film thick-
ness becomes comparable with the chain extension, arising from the fluctuations of the
terminal subchains formed by the immobilization of the chain segments at the interface
(Fig. 1b). This molecular model explains most of the features observed in the experiment,
being also in a full-qualitative agreement with the results revealed by the simulations of
the chains as ideal random walks: a) the confinement-induced mode becomes faster with
decreasing film thickness (experiment) because the terminal subchains become in average
shorter (simulation); b) its relaxation strength increases with increasing confinement on
the expense of that of the normal mode (exp.) because the relative number of the immo-
bilized chains increases with decreasing film thickness, while the relative number of the
free (non-immobilized) chains decreases (sim.); c) the confinement-induced mode shows
no molecular weight dependence (exp.) because with increasing the length of the chain
increases also its probability to come in contact with the immobilizing interface (sim.); d)
the relaxation rate of normal mode is not affected by the confinement down to thicknesses
comparable with the chain extension (exp.) because even for such small films a certain
fraction of free (non-immobilized) chains still exists (sim.), which exhibits a bulk-like dy-
namics; e) the segmental mode is not affected by the confinement because it takes place
on a length scale much smaller than the film thickness.

(a) (b)
Fig. 1: (a) Dielectric loss versus temperature for different thicknesses. (b) Terminal sub-
chains formed by immobilization of chain segments at an interface.

[1] A. Serghei, F. Kremer, Phys. Rev. Lett. 91, 165702 (2003).
[2] A. Serghei, F. Kremer, W. Kob, EJP E 12, 143 (2003)

Collaborators: W. Kob (Université Montpellier, France)
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3.1.4 Glass transition and molecular dynamics in grafted and
spin-coated PDMS layers

F. Kremer, L. Hartmann

Thin polymer films are an ideal system to study the influence of finite size effects on
the polymer dynamics [1-3]. We focus on measurements of dipole fluctuations by Broad-
band Dielectric Spectroscopy to reveal deviations from the bulk behaviour when reducing
the film thickness. In case of poly(dimethyl siloxane) (PDMS) we have studied the in-
fluence of different preparation techniques (thin grafted and spin cast films [3]) on the
molecular dynamics of this particular polymer besides that of mere variation of the film
thickness [2]. In thin films of grafted PDMS of thickness d above and below the radius of
gyration Rg we find bulk-like behavior for d = 41 nm> Rg whereas for d < Rg the dynamic
glass transition (α-relaxation) is by up to two orders of magnitude faster than in the bulk
(Fig. 1). The latter finding is explained by an altered chain conformation compared to the
bulk which presumably leads to an increased free volume as a consequence of the grafting
procedure. The α-relaxation in spin cast films compares well with that of the bulk with
respect to the thermal activation down to a film thickness d of 14 nm. However, in these
films an additional relaxation shows up which is faster than any relaxation in the bulk.
To explain this, we assume that in spin cast films only a part of the chains (close to the
upper film surface) experiences an altered chain conformation leading to this faster relax-
ation. This interpretation is supported by the values obtained for the dielectric strength
∆ε. In all films the ac-relaxation related to fluctuations in the amorphous fraction of
PDMS above crystallization has been observed showing no particular dependence of the
geometric confinement.

Fig. 1: Activation plot for PDMS of a molecular weight of 1.4 × 105 g/mol in the bulk
(black symbols) and as spin cast films (full colored symbols).

[1] L. Hartmann, K. Fukao, F. Kremer, Chapter in book: ”Broadband Dielectric
Spectroscopy”, p. 433, (Springer Verlag, Berlin, (2002), F. Kremer, A. Schönhals (Eds.)
[2] L. Hartmann, F. Kremer, P. Pouret, L. Léger, J. Chem. Phys. 118, 6052 (2003).
[3] F. Kremer, L. Hartmann, A. Serghei, P. Pouret, L. Léger, Eur. Phys. J. E. 12, 139
(2003).

Collaborators: Prof. Dr. L. Léger (Collège de France, Paris, France)
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3.1.5 Molecular dynamics in alternating maleimide copolymers
as studied by Broadband Dielectric Spectroscopy

F.Kremer, J.Tsuwi

Structural segments consisting of alkyl and perfluoroalkyl groups covalently linked by a
C-C bond are well known for their microphase separation resulting in highly ordered bulk
structures. The use of such materials for surface modification is numerous because of the
resulting low surface free energy. We are employing Broadband Dielectric Spectroscopy to
study the molecular dynamics in a set of poly (alkene-alt-N -(perfluoro-)alkylmaleimide)
copolymers with two types of side chains: alkyl or perfluoroalkyl. Generally, four relax-
ation regions are observed for copolymers with alkyl side chains (Fig. 1a), while three
processes are observed for the perfluorinated copolymer systems (Fig. 1b).
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Fig. 1: (a) Activation plot showing four relaxation processes (β, α’, α, αs) for unfluori-
nated copolymer systems and inset: maleimide unit with two side chains R1 and R2. (b)
Activation plot with three processes for perfluorinated copolymers.

The low temperature β-process is assigned to libration motion of CH3 at the end of
alkyl side chain, described by Arrhenius-type temperature dependence. The α’-process is
assigned to an out-of-plane motion of the succinimide ring while the a-process is assigned
to an in-plane fluctuation of one maleimide ring. The slowest as-process is assigned
to fluctuations of 2-3 maleimide rings that constitute the helical superstructure of the
copolymers. In contrast, the perfluorinated polymer systems show three relaxation regions
only. The faster process at low temperatures is assigned to the librational motion of the
CF3 end group while the other two processes are the α- and αs- processes assigned as
earlier.

[1] Song, K.,Twieg., J.R., Rabolt, J.F., Macromolecules 23,3712 (1990).
[2] Bailey, J., Walker, S.M., Polymer 13, 561 (1972).
[3] Block H., Lord, P.W., Walker, S.M., Polymer 16, 739 (1975).
[4] Cubbon R.C.P, Journal of Polymer Science: Part C 16, 387-392 (1967). [5]
Baltá-Calleja, F.J., Ramos J.G., Barrales-Rienda, J.M., Kolloid-Z. und Z. Polymere 250,
474-481 (1972).
[6] Tsuwi, J., Appelhans, D., Kremer, F., to be submitted to Macromolecules

Collaborators: D. Appelhans (IPF Dresden, Germany)
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3.1.6 Dielectric relaxation of inverse miniemulsions

F.Kremer, J.Tsuwi

Miniemulsions are specifically formulated heterophase systems where stable nanodroplets
of one phase are dispersed in a second continuous phase. These nanodroplets are envis-
aged to act as nanoreactors of polymer reactions resulting in polymer dispersions when
appropriate reaction initiators are introduced. We focus on dielectric measurements of
miniemulsions in the microwave frequencies to study nanodroplet stability.
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Fig. 1: (a) Miniemulsion composed of nanodroplets (colloids) dispersed in a continuous
medium of oil. (b) Real part (ε’, closed symbols) and imaginary part (ε”, open symbols)
of dielectric function versus frequency for time-dependence measurement of miniemulsion
with 0.5% surfactant concentration.

The dielectric spectra of miniemulsions are analyzed by considering the relaxation be-
haviour of both the surfactant and the solvent that form the nanodroplets. In the analysis,
the emulsions are modeled in the context of Effective Medium Theory to quantitatively
determine the dielectric energy storage and loss behaviour.

[1] Antonietti M.,Landfester K., Prog. Polym.Sci. 27, 689 -757(2002).
[2] Baar, C., Buchner, R., Kunz, W., J. physical chem. B 105, 2906-2913 (2001).
[3] Baar, C., Buchner, R., Kunz, W., J. physical chem. B 105, 2914-2922 (2001).
[4] Buchner, R., Barthel, J., Annu. Rep. Prog. Chem. C 97, 349-382 (2001).

Collaborators: M. Antonietti (Max Planck Institute of Colloids and Interfaces, Golm,
Germany)
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3.1.7 Fourier Transform Infrared Spectroscopy on ferroelectric
liquid crystal polymers

F. Kremer, M. Tammer

Time-resolved polarised Fourier Transform Infrared (FTIR) Spectroscopy is employed
to analyse the structure and dynamics in ferroelectric liquid crystal (FLC) polymers and
elastomers. The specifity of the IR-spectroscopy enables us to study for the different
molecular moieties the response to external mechanical end electrical excitations. By
that, subtle details of the microscopic motion such as angular excursion, reorientation
time, order parameter, asymmetries in the reorientational behaviour or elastomeric mem-
ory effects can be unravelled for the system under study.

(a) (b)
Fig. 1: (a) Setup of the polarized IR Spectroscopy. The liquid crystal is studied in book-
shelf geometry: the layer normal of the smectic phase is perpendicular to the surface
normal of the cell windows and the IR beam. (b) polarization dependent spectrum

(a) (b)
Fig. 2: (a) FLC polymer studied by FTIR. (b) Orientation angle for three different molec-
ular groups of the FLC polymer in dependence of temperature. The change in orientation
at the phase transition from SmC∗ to SmA is studied from these data.

Collaborators: R. Zentel (University of Mainz, Germany), H. Finkelmann (University
of Regensburg, Germany)
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3.1.8 Optical tweezers as a tool to unfold RNA-aptamers

F. Kremer, M. Salomo, M. Struhalla, J. Reinmuth, W. Skokow

Optical tweezers are commonly used to manipulate microscopic particles, with appli-
cations in cell manipulation, colloid research, manipulation of micromachines and studies
of the properties of light beams. With their extraordinary resolution in space (∼ 2 nm)
and force (∼1 pN) they became an irreplaceable tool for such purposes.

In our projects we want to use them to study folding and unfolding mechanisms of
nucleic acid structures. One project deals with the unfolding of RNA-aptamers. We want
to immobilize a single aptamer molecule between two polystyrene particles. One of them
is fixed with a femtotip. The other one is hold in the beam by the optical tweezers. To
realize the necessary distance between the two colloids the aptamer-RNA was elongated
by 500 bases on both ends. The immobilization between the two particles is then realized
by DNA/RNA-hybrids (Fig. 1). With the use of this experimental set-up it is possible to
apply forces in the range of piconewtons on the folded RNA-sequence. The aim of these
experiments is to investigate the behaviour of two aptamers that have specific binding
partners, an aptamer that binds to the antibiotic Moenomycin A and a second one that
has thrombin as binding partner. We want to investigate the differences in their folding
behaviour in absence and presence of their binding partners. So far we have synthesised
all necessary components for the pulling experiment (ssDNA handles, RNA aptamers)
and are now about to assemble and measure the system.

Fig. 1: Schematic representation of the molecule arrangement between the two beads.

[1] J. Liphardt et al., Science 292, 733-737 (2001).

Collaborators: Prof. Dr. U. Hahn (University of Hamburg, Germany), Prof. Dr. A.
Beck-Sickinger (University of Leipzig, Germany)
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3.1.9 Investigating DNA-binding proteins with optical tweezers

F. Kremer, M. Salomo, M. Struhalla, J. Reinmuth, W. Skokow

Sac7d belongs to a class of small chromosomal proteins identified in the hyperthermophilic
archaeon Sulfolobus acidocaldarius. It is extremely stable to heat, acid and chemical
agents and binds strongly to the minor groove of DNA, causing a sharp kinking of the
DNA helix leading to a shortening of the DNA (Fig. 1a). Our project has the aim to
investigate the influence of this DNA-binding protein on a DNA-double helix immobilized
between two particles. We want to use the optical tweezers to measure the dimension of
shortening. The protein should bind to the DNA every 3 bp leading to a theoretical com-
paction ratio of ∼1.2. The first aim of our project was to overproduce the sac7d protein.
For this purpose we used an E. coli based expression system. The protein purification was
done via affinity chromatography. The combination of these two methods enabled us to
isolate the protein in sufficient amount with a very high purity. The second step was to
establish a suitable experimental setup to measure the shortening of DNA after Sac7d has
bound. For that we immobilized a DNA-double helix between two polystyrene particles
and we were able to establish a system as shown in Fig. 1b. One particle is fixed by a
glass micropipette, the other one is hold in the optical tweezers. Via Streptavidin/Biotin-
and Digoxigenin/Anti-Digoxigenin interactions we were able to immobilize a single DNA-
molecule between this particles. We immobilized DNA with different lengths (1000 bp -
4000 bp) between the two particles and recorded force extension curves as shown in Fig. 1c.
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Fig. 1: (a) Model of the binding mechanism of the Sac7d protein (blue) to a DNA helix.
(b) Two beads (Ø=2.2µm) of which one is hold by a femtotip while the other fluctuates
in the photonic potential. (c) Force-extension curves for 1000 base pairs (bp) and 2000
bp dsDNA.

[1] H. Robinson et al.; Nature 392, 202-205 (1998).
[2] J.G. McAfee et al.; Bioch. 34, 10063-10077 (1995).
[3] D. Kulms et al.; Biol. Chem. 378, 545-551 (1997).
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3.1.10 Nano- and microfluidics using optical tweezers with fast
single particle tracking

F. Kremer, K. Kegler

Optical tweezers with fast single particle tracking are microscopic (∼ 1 µm) rheomet-
ric tools with nanometer resolution in space and subpico-newton resolution in force. The
proposed project has two intentions (i) to contribute to basic questions in colloid- and
polymer-research and (ii) to address technological problems of micro- and nanofluidics.In
detail the following experiments are planned: 1.) Measurements of the force-distance-
dependence between two isolated single colloids of which one is hold by a micropipette
(Ø∼ 0.4µm) and the other by an optical tweezer.

inlet outlet

micropipette

Fig. 1: Scheme of the sample cell to measure forces between two separated colloids.

The separation between the colloids can be varied in nanometer steps. 2.) Measure-
ment of the force-distance-dependence between a single colloid and a wall in the steady
state and in fluid flow for coated and uncoated surfaces. 3.) Measurement of depletion
forces between single colloids in the steady state and in flow for polymer solutions of
varying concentration and for polymers of different topology. 4.) A fluctuation analysis
of the Brownian motion of a colloid in an optical trap enables one to deduce the local
tensor of viscosity. By that inhomogeneous microscopic structures like microchannels or
living biological systems can be explored. 5.) Measurement of the flow profile of homo-
geneous and heterogeneous liquids in small (∼ µm) confining geometries like plates with
micrometer separation, microchannels, etc. with - and without surface modifications (e.g.
hydrophobization).

This project will be part of the DFG-Schwerpunktprogramm ”Nano- und Mikrofluide:
Von der molekularen Bewegung zur kontinuierlichen Strömung”.
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3.1.11 Time-resolved in-situ GISAXS measurements of thin films
of lamellar diblock copolymers

Ch. M. Papadakis, P. Busch

High molar mass polystyrene-polybutadiene (PS-PB) diblock copolymer thin films have
been found to spontaneously form patterned surfaces related to a perpendicular orien-
tation of the lamellae [1,2]. Non-equilibrium structures are notorious in such systems
because of the low mobility of the polymers in thin film geometry. Exposure to solvent
vapor is therefore frequently used in order to drive the films towards equilibrium. The
mechanisms for reorientation have not been elucidated yet, though. By means of Grazing-
Incidence Small-Angle X-ray Scattering (GISAXS) the mesoscopic structures within the
films can be studied [2]. At low incident angles of the X-ray beam (slightly above the
critical angle of total external reflection), a substantial portion of the incident and scat-
tered radiation is reflected by the substrate, resulting in high recorded intensity and low
measuring times (a few seconds), which enables time-resolved studies. The intensity due
to the substrate reflection can be understood in terms of the distorted-wave Born ap-
proximation. Our in-situ studies of a high molar mass PS-PB film during treatment with
toluene vapor show that the lamellar orientation changes within minutes but the perpen-
dicular orientation is regained after the solvent is removed (Fig. 1, Ref. 3).

Fig. 1: 2D GISAXS maps of a high molar mass film (183 kg/mol, lamellar thickness
836 Å). (a) In the dry state. (b) 1 min, (c) 2 min, (d) 4 min, (e) 8 min, (f) 17 min, and
(g) 33 min after the injection of toluene into the sample chamber. (h) 5 min after removal
of toluene. Incident angle = 0.21◦. The straight Bragg rods in (a) indicate the presence
of perpendicular lamellae, the bending in (b-g) indicates reorientation of the lamellae.

[1] P. Busch, D. Posselt, D.-M. Smilgies, B. Rheinländer, F. Kremer, C.M. Papadakis,
Macromolecules 36, 8717 (2003).
[2] P. Busch, D.-M. Smilgies, D. Posselt, F. Kremer, C.M.Papadakis, Macromol. Chem.
Phys. 204, F18 (2003), invited contribution.
[3] D.-M. Smilgies, P. Busch, D. Posselt, C.M. Papadakis, Synchr. Rad. News 15, 35
(2002), invited contribution.

Collaborators: Prof. Dr. B. Rheinländer (University of Leipzig), Prof. Dr. D. Posselt
(Roskilde University, Denmark), Dr. D. Smilgies (Cornell University, Ithaca, NY, U.S.A)
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3.1.12 A model of the GISAXS intensity of thin films of lamellar
diblock copolymers in the framework of the DWBA

Ch. M. Papadakis, P. Busch

Block copolymer thin films offer an opportunity for patterning of surfaces on the sub-
micrometer scale. By combining atomic force microscopy with Grazing-Incidence Small-
Angle X-ray Scattering (GISAXS), we have investigated the lamellar orientation in thin
films of symmetric, lamellae-forming polystyrene-polybutadiene (PS-PB) diblock copoly-
mers [1,2]. GISAXS measurements were performed in dependence of the incident angle
αi. Fig. 1a shows a two-dimensional GISAXS map of a film with lamellae oriented parallel
to the substrate surface. Distinct peaks are visible in the vicinity of the beam stop as
marked by the arrow. The dependence of the qz-positions of these peaks on ai cannot be
understood in the context of the Born approximation (BA), where only single scattering
is considered. We have modeled the scattering within the distorted wave Born approx-
imation (DWBA) which additionally takes into account the refraction of the X-rays by
the film surface and the reflection by the substrate. The peak positions expected from
this model are in excellent agreement with the experimental data (Fig. 1b).

Fig. 1: (a, left) 2D GISAXS map of a thin film of PS-PB having a molar mass of
22.6 kg/mol, a lamellar thickness of 197 ±4 Å and a film thickness of 1750 ±30 Å at αi

= 0.19◦. (b, right) Experimental qz-positions of the specularly reflected beam (squares)
and the non-specular peaks in dependence of the incident angle ai (triangles, circles). The
solid lines are the positions expected from DWBA theory. The dotted line denotes the
critical angle of the polymer film.

[1] P. Busch, D. Posselt, D.-M. Smilgies, B. Rheinländer, F. Kremer and C.M.
Papadakis, Macromolecules 36, 8717 (2003).
[2] D.-M. Smilgies, P. Busch, D. Posselt and C.M. Papadakis, Synchr. Rad. News 15, 35
(2002).

Collaborators: Prof. Dr. Bernd Rheinländer (University of Leipzig, Germany), Prof.
Dr. Dorthe Posselt (Roskilde University, Denmark), Dr. Detlef Smilgies (Cornell Uni-
versity, Ithaca, NY, U.S.A), Dr. Markus Rauscher (MPI für Metallforschung, Stuttgart,
Germany).
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3.1.13 Aggregation behavior of amphiphilic diblock copolymers
studied using fluorescence correlation spectroscopy and
dynamic light scattering

Ch. M. Papadakis, T. B. Bonné

In aqueous solution, amphiphilic block copolymers have been found to spontaneously
aggregate into micellar solutions and lyotropic phases reminiscent of the structures en-
countered in low molar mass surfactants and lipids [1]. The aim of our study is to
elucidate the diffusion mechanisms in such systems. Poly(oxazolin) based polymers con-
stitute a very versatile model system. They have the advantage that their architecture
(homopolymers, diblock and triblock copolymers) as well as the degree of hydrophobic-
ity of the blocks can readily be varied, and they can be fluorescence labeled. We have
used Fluorescence Correlation Spectroscopy (FCS) in order to study the self-diffusion
of fluorescence-labeled poly(methyloxazolin)-poly(nonyloxazolin) diblock copolymers in
aqueous solution. The fluorescence-labeled polymers were used as tracers in aqueous so-
lutions of otherwise identical, non-labeled polymers. In this way, a large concentration
range could be accessed without oversaturating the FCS detector. By identifying the dif-
fusion coefficients of the unimers and the micelles, the critical micelle concentration was
identified (Fig. 1). Additional temperature-resolved Dynamic Light Scattering (DLS)
experiments showed that dissolution at room temperature results in a metastable state
containing very large aggregates. Only after heating to ∼90◦C, the micelles assume their
equilibrium size of ∼12 nm. Comparison of the hydrodynamic radii obtained using DLS
with those from FCS on annealed samples showed that the hydrodynamic radius of the
micelles can reliably be determined using FCS (Fig. 1). In the future, we wish to extend
our dynamic studies to triblock copolymers as well as to lipopolymers.
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Fig. 1: Concentration dependence of the diffusion coefficients of aqueous solutions of a low
molar mass poly(methyloxazoline)-poly-(nonyloxazoline) (PMox-PNox) diblock copoly-
mer (molar mass 4796 g/mol, weight fraction of PMox 56%) with the fluorescence label
TRITC attached to the end of the PMox block. The solutions were annealed prior to
measurement. Blue symbols: results from FCS, red symbols: results from DLS.

[1] P. Alexandridis, B. Lindman (Eds.), Amphiphilic Block Copolymers: Self-Assembly
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and Applications, Elsevier (2000).

Collaborators: Prof. Dr. U. Hahn, Dr. T. Greiner-Stöffele (Fakultät für Biowis-
senschaften, Pharmazie und Psychologie, Universität Leipzig, Germany), Dr. R. Jordan,
DC K. Lüdtke (Fakultät für Chemie, TU München, Germany), Dr. P. Štepánek (Inst. of
Macromolecular Chemistry, Prague, Czech Rep.).

3.1.14 Isotropic droplets in freely suspended smectic films

R. Stannarius, H. Schüring

Besides the well-known layer-by-layer thinning, droplet nucleation, as a phase transi-
tion phenomena in freely suspended smectic films, came into the focus of interest over
the last years. Isotropic inclusions that form in the vincinity of the bulk smectic-isotropic
phase transition are investigated my means of reflection microscopy. From their shapes
and dynamics in the film plane, interface tensions between smectogens in different phases
can be derived. Basing on the assumption of a surface phase transition from the isotropic
phase to a smectic surface interphase, a model has been developed that considers the
relevant interface tensions and the surface tension of the smectic phase. The latter can be
easily determined by use of the earlier established bubble method. Thus, interphase ten-
sions < 10−3 N/m between isotropic and smectic phases can be accessed by an analysis
of the droplet shapes. An extension of the model to inhomogeneously thick films ex-
plains the spontaneous arrangement of droplets at film thickness steps (Fig. 1) as well as
the capillary force driven motion of droplets in the direction of the film thickness gradient.
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isotropic
droplet

2r

smectic film

smectic
surface layers

d
h

(b)
Fig. 1: (a) Model of an isotropic droplet in a homogeneous smectic film and (b) arrange-
ment of isotropic droplets at film thickness steps, observed by reflection microscopy under
monochromatic illumination (λ=630 nm), image size: 260µm × 190 µm.

[1] H. Schüring, R. Stannarius, Langmuir. 18, 9735 (2002).
[2] H. Schüring, R. Stannarius, Mol. Cryst. Liq. Cryst. (in press).
[3] H. Schüring, PhD thesis, Mechanische und optische Untersuchungen freitragender
smektischer Filme, University of Leipzig, 2003.

Collaborators: Prof. Dr. W. Weißflog (MLU Halle, Germany) Prof. Dr. R. Zentel
(Universität Mainz, Germany)
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3.1.15 Laser diffraction by periodic dynamic patterns in ani-
sotropic fluids

R. Stannarius, T. John, U. Behn

We describe the application of a laser diffraction technique to the study of electroconvec-
tion in nematic liquid crystal cells. It allows a real-time quantitative access to pattern
wave lengths and amplitudes. The diffraction profile of the spatial periodic pattern is
calculated and compared quantitatively to experimental intensity profiles. For small di-
rector tilt amplitudes , the phase grating generated in normally incident undeflected light
and the first order term correction from light deflection is derived analytically. It yields
an dependence of the diffracted intensity I on the amplitude of director deflections. For
larger director tilt amplitudes, phase and amplitude modulations of deflection of light in
the inhomogeneous director field are calculated numerically. We apply the calculations to
the determination of the director deflection and measure growth and decay rates of the
dissipative patterns under periodic excitation. Real time analysis of pattern amplitudes
under stochastic excitation is demonstrated.

Fig. 1: It is shown the comparison of numerical calculated diffraction profiles (solid line)
and measured intensities (dots), normalized to the primary beam intensity. The mea-
sured profile at excitation voltage U = 28.79 V (a) and U = 28.90 V (b) corresponds to
the calculation with amplitudes φ = 7.4◦ (a) and φ = 12.6◦ (b). The pattern wave length
λ = 48µm, cell thickness 48.5µm, critical voltage for onset of electroconvection Uc =
28.73 V.

[1] H. Amm, U. Behn, T. John, R. Stannarius, Mol. Cryst. Liq. Cryst. 304, 525 (1997).
[2] T. John, R. Stannarius, and U. Behn. Phys. Rev. Lett. 83 749, (1999).
[3] U. Behn, T. John, R. Stannarius, AIP Conf. Proc, 622 381 (2002).
[4] T. John, U. Behn, R. Stannarius, Phys. Rev. E 65 046229 (2002).
[5] T. John, U. Behn, R. Stannarius, Europhys. J. B 35, 267-278 (2003).

Collaboration: Prof. Dr. U. Behn (ITP Leipzig, Germany), Dr. T. Scharf (Neuchatel,
Germany)



48 3. INSTITUTE FOR EXPERIMENTAL PHYSICS I

3.1.16 Funding

Prof. Dr. F. Kremer
Optische Pinzette als mikroskopische Sensoren und Aktuatoren zum Studium der Wech-
selwirkung zwischen einzelnen Biomolekülen
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and H. Kresse
”Structural and conformational investigations in SmA and different SmC phases of new
hockey stick-shaped compounds”
Liquid Crystals 30, 529-539 (2003)

[11] Busch, P.; D. Posselt, D.-M. Smilgies, F. Kremer and C. M. Papadakis
”Diblock copolymer thin films investigated by tapping mode AFM: Molar mass depen-
dence of surface ordering”
Macromolecules 36, 8717-8727 (2003)

[12] Busch, P.; D.-M. Smilgies, D. Posselt, F. Kremer, C. M. Papadakis
”Grazing-incidence small-angle X-ray scattering (GISAXS) - Inner structure and kinetics
of thin block copolymer films”
Proceedings of the Makromolekulares Kolloquium Freiburg, Feb. 2003, Macromolecular
Chemistry and Physics 204, F18 (2003) (invited contribution)

[13] Das, B.; S. Grande, W. Weissflog, A. Eremin, M.W. Schröder, G. Pelzl, S. Diele,
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3.2 Physics of Interfaces

3.2.1 Introduction

The highlights in research and education of our group are intimately related to recent
progress in the various fields of diffusion measurement, including PFG NMR, interference
and IR microscopy. Within the EC-sponsored project TROCAT, under our coordination,
nine groups from five countries are jointly exploring the interrelation between molecular
diffusion and conversion in heterogeneous catalysis. The so far attained results of both
fundamental and industrial relevance were unconceivable without this strong experimental
basis within the Magnetic Resonance Centre of our University. We are happy that theses
activities shall be continued within a Network of Excellence of the 6th frame programme
of the EC (INSIDE-PORES). With the special focus on diffusion in zeolites, we initiated
the establishment of an international (British/French/German) research group (”Interna-
tionale Forschergruppe”), sponsored by EPSRC, CNRS and DFG. The activities of this
group will be of particular benefit for the International Research Training Group (”Eu-
ropäisches Graduiertenkolleg”) dedicated to ”Diffusion in Porous Media”, which starts
to operate in summer term 04 and comprises groups from our institute and from the
institutes of Theoretical Physics and of Chemical Technology (Faculty of Chemistry and
Mineralogy), together with colleagues of the Universities of Amsterdam, Delft and Eind-
hoven. We particularly appreciate the presence of Douglas Morris Ruthven, Humboldt -
Research - Awardee in 2002, in our group and the numerous attractive projects initiated
by his involvement, with the combination of the ZLC techniques and NMR as the most
prominent example. The following summaries refer to our contributions to

1. Development of Instrumentation and Technology (Sections 3.2.2–3.2.6)

2. Fundamental Research in Surface Science (Sections 3.2.7–3.2.10)

3. Applications (Sections 3.2.11–3.2.13)
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3.2.2 Background gradient suppression in stimulated echo NMR
diffusion studies using magic pulsed field gradient ratios

Petrik Galvosas, Frank Stallmach, Jörg Kärger

By evaluating the spin echo attenuation for a generalized 13-interval PFG NMR se-
quence [1] consisting of pulsed field gradients with four different effective intensities
(F p, Gp, F r, Gr), magic pulsed field gradient ratios (MPFG) for the prepare (F p, Gp) and
the read F r, Gr) interval are derived, which suppress the cross term between background
field gradients and the pulsed field gradients even in the cases where the background
field gradients may change during the z-store interval of the pulse sequence [2]. These
MPFG ratios depend only on the timing of the pulsed gradients in the pulse sequence and
allow a convenient experimental approach to background gradient suppression in NMR
diffusion studies with heterogeneous systems, where the local properties of the (internal)
background gradients are often unknown. If the pulsed field gradients are centered in the
τ -intervals between the 180◦ and 90◦ rf pulses, these two MPFG ratios coincide into one
value given by:

η ≡ Gp

F p = Gr

F r = 1 − 8

1+ 1
3

δ2

τ2

.

Since the width of the pulsed field gradients (δ) is bounded by 0 ≤ δ ≤ τ , η can only be in
the range of 5 ≤ −η ≤ 7. These theoretical results, which were confirmed experimentally,
extend the approach of Sun et al. (J. Magn. Reson. 161, 168 (2003)), who also intro-
duced a 13-interval type PFG NMR sequence with two asymmetric pulsed magnetic field
gradients suitable to suppress unwanted cross terms with spatially dependent background
field gradients.

For the experimental realization of such experiments using the proposed magic pulsed
field gradient ratios one needs to apply two equal polarity F and G gradients in the prepare
interval and two opposite but also equal polarity gradients in the read interval. The figure
above shows the necessary intensity ratios of these four gradients on scale, if the pulsed
gradients are centered in the τ -intervals and δ = τ/3.

[1] R.M. Cotts et al., J. Magn. Reson. 83 (1989), 252.
[2] P. Galvosas, F. Stallmach, J. Kärger, J. Magn. Reson. 166 (2004), 164.
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3.2.3 A new fiber optical thermometer and its application to
process control in strong electric, magnetic and electro-
magnetic fields

Frank Stallmach, Ulf Roland∗
∗ UFZ - Center for Environmental Research Leipzig-Halle, Dept. of Environmental Technology

A new multi-channel fiber optical thermometer (FOT) system is described which utilizes
the temperature dependence of the band gap of a semiconductor (GaAs). Its modu-
lar design allows a flexible multi-channel registration and enhances the reliability of the
temperature measurement using an innovative sensor concept. The FOT can be easily
adapted to a wide range of technical and economical requirements especially concerning
the measuring range, number of channels, accuracy and cost per channel. Its measuring
principle and design make it a versatile tool for utilization under various conditions critical
for conventional temperature measurement devices (strong electric and magnetic fields,
radio-wave and microwave applications, continuous process monitoring in environmental
technology) [1].

The example below demonstrates the appropriateness and advantages of the FOT
system in a very intense static magnetic field in combination with pulsed radio-wave
excitation applied in NMR spectroscopy [1]. It shows the increase of the T2 relaxation
time distribution of liquid water in sand with decreasing temperature until the water
freezes to ice. This shift is controlled by a decreasing influence of the relaxation due to
diffusion in internal magnetic field gradients as quantitatively shown in ref. [2].
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Fig. 1: Distribution of NMR relaxation times T2 of a humid sand sample (water
content approx. 60% of the pore volume) as a function of temperature measured by an
FOT placed in the center of the sand/water sample in the NMR coil of the probe inside
a 400 MHz NMR spectrometer.

[1] U. Roland, C.P. Renschen, D. Lippik, F. Stallmach, F. Holzer, Sensors Letters 1, 93
(2003).
[2] F. Stallmach, Habilitation thesis, University of Leipzig (2004).
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3.2.4 Application of Interference and FTIR-Microscopy to In-
vestigating Intracrystalline Concentration Profiles in AFI-
Type Crystals

Enrico Lehmann, Christian Chmelik, Sergey Vasenkov, Brigitte Staudte, Friedrich Kremer∗,
Jörg Kärger
∗ Institute for Experimental Physics I, Physik Anisotroper Fluide

Intracrystalline concentration profiles of water, adsorbed in large crystals of CrAPO–5
and SAPO–5 under equilibrium with water vapor at 1 and 20 mbar, were determined with
use of interference and FTIR microscopy [1]. By using both techniques, the high spatial
resolution of interference microscopy is complemented by the ability of FTIR spectroscopy
to pinpoint adsorbates by their characteristic IR bands. At lower pressure, the profiles
reveal highly inhomogeneous distributions of intracrystalline water in both crystal types.
This effect is attributed to structural heterogeneity of the crystals. Its possible relation
to the progress of the crystal growth process is considered. Under the vapor pressure of
20 mbar, the water molecules are homogeneously distributed over the crystals. In this
case, the pore volume is saturated with liquid-like water. The structural heterogeneity
has been found to have a low or no influence on the final uptake level of the crystals. The
reported results complement our work on studying intracrystalline concentration profiles
of methanol in CrAPO–5 zeolite crystals [2].
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Fig. 1. Intracrystalline concentration profiles of water in the CrAPO-5 (a1, a2, a3) and
SAPO-5 (b1, b2, b3) crystals integrated along the y direction under equilibrium with
water vapor at 1 mbar (a1, b1, a3, b3) and 20 mbar (a2, b2). The channels run along
the z axis. Darker regions correspond to higher concentration integrals.

[1] E. Lehmann, S. Vasenkov, J. Kärger, G. Zadrozna, J. Kornatowski, Ö. Weiss, F.
Schüth, J. Phys. Chem. B, 107 (2003), 4685-4687.
[2] E. Lehmann, C. Chmelik, H. Scheidt, S. Vasenkov, B. Staudte, J. Kärger, F. Kremer,
G. Zadrozna and J. Kornatowski, J. Am. Chem. Soc. 124 (2002) 8690-8692.
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3.2.5 Monitoring Intracrystalline Distributions of Guest Molecules
in Ferrierite Crystals by Interference and IR Microscopy

Christian Chmelik, Pavel Kortunov, Enrico Lehmann, Sergey Vasenkov, Jörg Kärger

For theoretical understanding of transport processes, needed for further optimizations
and application of new concepts, it is essential to know, how the molecular transport
is influenced by various features of zeolite structure (such as pore system, intergrowth
effects and transport barriers on surface). The pore structure of ferrierite consists of a
network of mutually intersecting channels of two different sizes. Offering in this way two
different types of diffusion paths, ferrierite may serve as a model system for ”molecular
traffic control” (enhanced reactivity as a consequence of different diffusion paths from and
to the reactive sites).

The evolution of intracrystalline concentration profiles during molecular uptake or
tracer exchange in ferrierite was monitored using Interference (IFM) and FTIR microscopy
(IRM) [1]. Non-homogeneous concentration profiles were recorded (also) at sorption equi-
librium. This result is attributed to the outer shape of the crystals. From the shape of
the profiles during uptake and the uptake or tracer exchange curves for different pressures
we conclude that the uptake is controlled by an interplay of intracrystalline diffusion
and permeability of the crystal surface, whereby a concentration dependence for both
mechanisms has to be assumed.

Quantitative data analysis and monitoring intracrystalline concentration profiles in
ferrierite crystals free of surface barriers remains to be a challenging task of our future
research.

Fig. 1: (a) IFM concentration profiles at different times during uptake (crystal size
about 210× 50µm2). The uptake takes place through the channels in y direction (higher
concentration at the margins, lower in the middle) and is controlled by an interplay of
intracrystalline diffusion and transport barriers on the surface. (b) IRM profiles along z
direction for tracer exchange. The inhomogeneous equilibrium profile (also for IFM data)
is attributed to the crystal shape, vs. linearly increasing thickness towards the middle.

[1] C. Chmelik, P. Kortunov, E. Lehmann, S. Vasenkov, J. Kärger, Y. Traa, J.
Weitkamp, Proceedings of the 16th German Zeolite Conference, Dresden, 2004.
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3.2.6 Combining macroscopic and microscopic diffusion studies
in zeolites using NMR techniques

Krzyzstof Banas, Federico Brandani, Frank Stallmach, Jörg Kärger , Douglas M. Ruthven
* Department of Chemical Engineering, University of Maine, Orono, Maine, USA

The relation between the diffusivities obtained under equilibrium and non-equilibrium
conditions in microporous materials is still an open problem of fundamental research
[1]. This work is part of an effort aimed at the establishment of comparative diffusion
measurements in zeolites by equilibrium and non-equilibrium techniques. Among the
non-equilibrium techniques the Zero Length Column (ZLC) method is widely used for
measuring intracrystalline or intraparticle diffusion in zeolite-based adsorbents. It de-
pends on exposing a small sample of adsorbent to an adsorbate at known partial pressure
in an inert carrier stream and following the desorption when the sample is purged by pure
carrier. By monitoring the decay of the concentration in the fluid phase intracrystalline
diffusion coefficients can be determined [2]. In this study the ZLC technique is extended
to the case were the decay of the adsorbed phase concentration is observed using NMR.

An adsorption-desorption apparatus compatible with a 400 MHz NMR spectrometer
was developed. It operates with nitrogen or helium as inert carrier gas. The column of the
adsorbent material is placed in the sensitive region of the superconducting magnet and
the rf coil of the NMR spectrometer. In experiment with silicalite-1/isobutane sufficient
NMR signal-to-noise ratios are obtained with 25 mg of the zeolite, corresponding to less
than 4 mm filling height in the column. Adsorption and desorption of the adsorbate
are observed by corresponding intensity changes of the NMR signal. Due to the short
transverse relaxation time of isobutane in silicalite (T2 = 3 ms), the CPMG NMR sequence
with an interecho spacing of 200µs was used to monitor the signal intensity and thus the
adsorbed isobutane concentration.

The time scales of the adsorption and desorption processes depend on concentration,
temperature and crystal shape and are found to be in the range of 5 to 60 minutes. From
the desorption branch at a temperature of 90◦C the non-equilibrium ZLC NMR measure-
ments yield an intracrystalline diffusion coefficient of 5.2 × 10−13 m2/s for isobutane in
silicalite. This value is in satisfactory agreement with PFG NMR studies of the same col-
umn under maximum adsorption that yields a self-diffusion coefficient of 3.1×10−13m2/s.

Current investigations are focused on the study of the concentration dependence of
diffusion coefficients in other adsorbate/adsorbent systems using the ZLC NMR and PFG
NMR techniques.

[1] J. Kärger and D.M. Ruthven, Diffusion in Zeolites and other Microporous Solids,
Wiley & Sons, New York, 1992.
[2] M. Eic and D.M. Ruthven, Zeolites 8, 40 (1988).
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3.2.7 17O NMR studies of the structure and basic properties of
zeolites

Horst Ernst, Dieter Freude, Bernd Knorr, Thomas Loeser, Dagmar Prager, Denis Schnei-
der, Daniel Prochnow

Multiple-quantum magic-angle spinning and double rotation NMR techniques were ap-
plied in the high field of 17.6 T to the study of oxygen-17 enriched zeolites A, LSX and
sodalites with the ratio Si/Al = 1. A monotonic correlation between the isotropic value of
the chemical shift and the Si-O-Al bond angle α (taken from X-ray data) could be found.
It was confirmed that individual linear correlations exist between the isotropic 17O chem-
ical shift δ(17O) and the s-character ρ of the oxygen hybrid orbitals for the hydro- and
hydroxysodalites, the zeolites (with Si/Al = 1) Na-A (hydrated) and Na,K-LSX (hydrated,
dehydrated). Corresponding linear dependencies can be found if the isotropic chemical
shifts δ(17O) are plotted against the Si-Al-distances in the Si-O-Al bridges. The increase
in δ(17O) by the adsorption of water and cation exchange can be separated from the effect
of the bond angle a on the 17O chemical shift.

The dehydration of the zeolites LSX causes 17O NMR chemical shift changes by the
superimposed effects of the well-known changes of the Si-O-Al bond angles and the effect
of polarization of the framework by the adsorbed water molecules. The total effect is
about 8 ppm, whereas the angular corrected effect amounts about 4 ppm. The low field
shift due to the adsorption interaction is relatively small (ca. 2.2 ppm) for formic acid.

Ion exchange of the hydrated zeolites generates stronger chemical shift effects. The
increase of the basicity of the oxygen framework of the zeolite LSX is reflected by a down-
field shift of ca. 10 ppm going from the lithium to the cesium form, and the substitution
of sodium by thallium in the zeolite A causes a shift of 34 ppm for the O3 signal.

17O DOR NMR spectra are superior to 17O 3QMAS NMR spectra with respect to the
resolution by a factor of two. The application of the FAM2 excitation does not improve
resolution or intensity in the 17O 3QMAS NMR spectra. The signal-to-noise ratio of
DOR and 3QMAS NMR spectra is comparable, whereas that of 5Q MAS NMR spectra
is lower by more than one order of magnitude, and the spectral window is lower by a
factor of five. This limits the application of the 5QMAS technique to the 17O NMR. The
residual linewidths of the signals in the 17O DOR and 17O 5QMAS NMR are caused by
a distribution of the Si-O-Al angles in the zeolites.
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3.2.8 Gas diffusion in zeolite beds: PFG NMR evidence for dif-
ferent tortuosity factors in the Knudsen and bulk regimes

Sergey Vasenkov, Oliver Geier, Jörg Kärger

The pulsed field gradient (PFG) NMR technique was applied to study the ethane dif-
fusion in beds of NaX zeolites for displacements, which are orders of magnitude larger
than the size of the individual crystals. The experimental results show that the apparent
tortuosity factor in the Knudsen regime may be significantly larger than that in the bulk
regime for one and the same porous medium [1]. The observed difference between the
tortuosity factors in the bulk and Knudsen regimes may have its origin in the different
influence of the geometrical details of the pore surface of the intercrystalline space on
diffusion in these two regimes. Most recent MC studies of the effect of surface roughness
on self- and transport diffusion in porous systems show that for the same mean pore size
the self-diffusion coefficients in the Knudsen regime may vary in a broad range (up to
one order of magnitude) depending on surface roughness [2]. The detailed explanation of
the differences between the apparent tortuosity factors in the bulk and Knudsen regimes
remains to be the subject of future research.

[1] S. Vasenkov, O. Geier, J. Kärger, Gas diffusion in zeolite beds: PFG NMR evidence
for different tortuosity factors in the Knudsen and bulk regimes, Eur Phys J E 2003, 12,
s01 009 (2003).
[2] K. Malek, M.-O. Coppens. Effects of Surface Roughness on Self- and Transport
Diffusion in Porous Media in the Knudsen Regime, Phys. Rev. Lett. 87, 125505 (2001).
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3.2.9 Desorption of particle mixtures into vacuum from a qua-
dratic lattice with Molecular-Traffic-Control character

Peter Bräuer, Andreas Brzank, Jörg Kärger

The possibility of reactivity enhancement by molecular traffic control (MTC) was ra-
tionalized by dynamic Monte Carlo simulations in a network of single-file systems under a
stationary regime [1]. It was clarified under which conditions the superiority of the MTC
system versus the reference (REF) system is maintained. It turns out that the MTC
system becomes progressively beneficial over the REF system with increasing file lengths
between the intersection points. Thus, the benefit of the MTC system is found to be
purchased by (i) stronger transport inhibition and (ii) a reduced density of active sites
(since in the model considered the sites in the channel segments - being accessible by only
one type of molecules - had to be required to be inactive for molecular conversion). Now it
is of great interest, which behavior the molecules show in the case, if they can be expand
into the vacuum from a quadratic lattice consisting of α- and β-channels with different
hop probabilities Pα

B of the product molecules in the α-channels [2]. The figure shows the
profiles of the particles A (first line), B (second line) and of their sum (third line) on the
lattice after 50 elementary desorption time steps for the hop probabilities P α

B = 0 (the
so-called hard MTC system), Pα

B = 0.3 (a so-called soft MTC system) and Pα
B = 1 (the

REF system). In the case of the REF system one can observe normal symmetrical diffu-
sion behavior of the molecules. In the case of the MTC system (especially pronounced at
its hard form) the transport inhibition of the particles B in the α-channels is correlated
with the diffusion of the particle A in the α-channels (the diffusivity is smaller than in the
REF system) as well as with the diffusion of the B molecules in β-channels (the diffusion
is faster). This leads to a more pronounced diffusion anisotropy than expected.

[1] Bräuer, P., Brzank, A., Kärger, J.: ”Adsorption and Reaction in Single-File
Networks”, J. Phys. Chem. B 2003, 107, 1821 - 1831.
[2] Bräuer, P., Brzank, A., Kärger, J.: in preparation.
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3.2.10 Comicellisation of Diblock and Triblock Copolymers in a
Selective Solvent. Pulsed Field Gradient NMR and Light
Scattering Investigations

Stefan Gröger, Frank Stallmach, Jörg Kärger, Dieter Geschke∗ und Cestmı́r Konák∗∗
∗ Institute of Experimental Physics I, Polymer Physics
∗∗ Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague

Comicellisation of diblock polystyrene-block-hydrogenated polyisoprene and triblock poly-
styrene-block-hydrogenated polybutadiene-block-polystyrene copolymers was investigated
by pulsed field gradient NMR and dynamic light scattering (DLS) methods at 25◦C in
decane [1]. The equilibrium concentrations of triblock unimer in solutions were evaluated
from normalised attenuation functions obtained by pulsed-field gradient NMR.

Previous dynamic light scattering experiments with the diblock copolymer polystyrene-
polyisoprene and the triblock copolymer polystyrene-polybutadiene-polystyrene mixtures
dissolved in n-decane revealed that the micelles formed by the diblocks were significantly
affected by the, essentially molecularly dissolved, triblocks [2]. This finding was confirmed
in this study by self-diffusion measurements using our pulsed field gradient NMR tech-
nique. This agreement is of particular relevance since PFG NMR is able to record the
diffusion paths of the proton-containing molecules with uniform sensitivity, determined
by the number of protons per particle, while in DLS the contribution of large agglomer-
ates is overemphasised. Thus, PFG NMR is a more suitable method for investigation of
self-association processes in multi-component (co)polymer systems than light scattering
methods.
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Fig. 1: Normalized equilibrium weight concentration of PS-HPB-PS triblock copoly-
mer, cetr/ctot, plotted as a function of X; obtained from spin echo attenuation curves
measured by PFG NMR, calculated from apparent molecular weights of (co)micelles mea-
sured by DLS. The dashed line corresponds to a mixture of hypothetical non-interacting
particles.

[1] St. Gröger, D. Geschke, J. Kärger, F. Stallmach, C. Konk, Macromolecules Rapide
Communications, in press.
[2] C. Konák, M. Helmstedt, Macromolecules 36, 4603 (2003).
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3.2.11 Transport optimization of FCC catalysts in the frame-
work of the EC Project ’TROCAT’

Pavel Kortunov, Sergey Vasenkov, Dieter Freude, Jörg Kärger

In this project, our intention is to find the routes of the production of fluid catalytic
cracking (FCC) catalysts, which lead to improved catalytic performance due to optimiza-
tion of the transport of reactants and products in these materials. Recent progress in the
area of the pulsed field gradient technique of nuclear magnetic resonance (PFG NMR)
has made possible the direct observation of molecular migration (diffusion) in microp-
orous catalysts. In the TROCAT project this technique is used to overcome one of the
main shortcomings in the optimization of FCC catalysts, i.e. the lack of the optimization
with respect to the transport properties. Investigations of the transport properties of
the samples were complemented by the characterization of their catalytic and structural
properties, by special syntheses and by molecular modelling performed by our partners
in the University of Athens, CEPSA (Madrid), Grace (Worms), the Heyrovsky Institute
Prague, SINTEF (Oslo) and the Stuttgart University.

Our data suggest that for relatively small molecules (∼C10) the rate of molecular
exchange between the catalyst particles and their surroundings may be influenced to a
great extent by the intracrystalline diffusivity (i.e. diffusivity in zeolite crystals). At
the same time, for large molecules this rate is primarily determined by the intraparticle
diffusion coefficient (i.e. diffusivity in catalyst particles) and to a much smaller extent
by the intracrystalline diffusivity. In response to this result the study of the correlations
between such particle properties as macroporosity and the macropore size distribution,
which affect the intraparticle diffusivities, on one hand, and the catalytic performance
of these particles, on the other hand, has been carried out. To this end several catalyst
samples containing the same amounts of the same zeolite Y but having different intra-
particle morphology were manufactured and investigated. The molecular simulations have
been performed in order to help to understand an influence of the morphology of cata-
lyst particles on the intraparticle transport properties. The results obtained show that
the samples with higher catalytic activity also reveal larger intraparticle diffusivity. The
catalyst optimization route leading to higher intraparticle diffusivities is considered to be
especially promising at this point. The high potentials of this route are demonstrated
by the preparation of the new catalyst samples GRACE 4 and GRACE 5 showing better
catalytic performance than the reference GRACE 1 sample.
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3.2.12 PFG NMR Studies in Industrial Catalysts

Frank Stallmach, Stefan Gröger, Ulrich Müller∗
∗ BASF AG, Ludwigshafen, Germany

Pulsed field gradient nuclear magnetic resonance (PFG NMR) is a versatile tool to study
transport processes of fluids and gases in porous materials. It monitors averaged molec-
ular displacements (r.m.s. displacements) and the self-diffusion coefficients of the guest
molecules on time scales, which – depending of the nuclear relaxation times – typically
range from a few milliseconds up to seconds. PFG NMR may be used to determine ge-
ometric pore structure parameters or to clarify the transport mechanisms of the guest
molecules in the porous materials.

During the past years we developed and successfully applied a PFG NMR method to
selectively measure the tortuosity of the transport pores in formulated catalyst particles
[1]. It is based on measurements of liquid saturated catalyst particles. It monitors the
time-dependence of the self-diffusion of the liquid molecules in the transport pores of the
catalyst and compares it to the corresponding data in the bulk liquid. Results obtained
on formulated catalysts for synthesis of propylenoxid (based on a titanium zeolite with
MFI structure) and propane dehydration (based on platinum loaded zirconium oxid) [2]
are reported.

For the ZrO-based catalysts, PFG NMR studies of adsorbed propane and propene
contributed to the clarification of the transport process responsible for diffusional trans-
port under conditions in the reactor. Based on the experimental data for propane and
propene self-diffusion, the above mentioned PFG NMR studies of the tortuosity, mer-
cury porosimetry and adsorption isotherms, a comprehensive model was developed which
predicts the diffusion in the transport pores without any unknown, hidden parameters.

Fig. 1: Tortuosity of formulated catalyst samples as measured by PFG NMR using
water and cyclooctane as probe molecules, respectively. During the fife years period of
development of the catalyst, the tortuosity decreased and the catalytic properties like
selectivity and activity increased [1,2].
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[1] F. Stallmach, Habilitation thesis, University of Leipzig (2004).
[2] U. Müller, R. Senk, W. Hader, P. Rudolf, N. Rieber, Shaped body and method for
producing the same, Internationales Patent, WO 02/085513 A2, PCT/EP 02/02278
(2002).

3.2.13 In situ Studies of the Mechanism of Heterogeneously
Catalyzed Reactions by Laser -Supported
High-Temperature MAS NMR

Horst Ernst, Dieter Freude, Johanna Kanellopoulos, Toralf Mildner, Dagmar Prager, De-
nis Schneider

Surface sites capable of donating protons or accepting electrons from adsorbed molecules
are essential for heterogeneous catalysis. Magic-angle-spinning nuclear magnetic reso-
nance spectroscopy (MAS NMR) has been successfully applied to the study of the inter-
action between acid sites in zeolites and base molecules and to the catalytic conversion
of organic molecules. The in situ technique became the most important tool for such
studies. A new technique making use of a laser beam makes it possible to switch from
room temperature, at which the reaction is too slow to be measured, to temperatures up
to 800 K, at which the reaction takes place within a few seconds.
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Fig. 1: (a) Experimental set-up, (b) Arrhenius plot of the H-D and H-H exchange rates
for benzene molecules in the zeolites 85 H-Y and 92 H-Y. The values which are marked by
open or full circles and squares were measured by laser heating or conventional heating,
respectively.

Activation energies of the proton transfer have been obtained under the assumption
of a constant value of the pre-exponential factor in the Arrhenius plot to 102 kJ mol−1

for zeolite 85 H-Y (Si/Al = 2.4) and 93 kJ mol−1 for zeolite 92 H-Y (Si/Al = 3.1). In
this case, the variation of the Si/Al ratio, which causes a change of the deprotonation
energy of the bridging hydroxyl groups, can explain the differences of the exchange rate.
However, a variation of the pre-exponential factor by steric effects like the existence of
non-framework aluminum species cannot be excluded.
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3.2.14 Funding

Prof. Dr. D. Freude, Dr. H. Ernst
Characterization of elementary steps of the crystallisation of zeolites in porous glasses by
in situ MAS NMR
DFG-Projekt FR 902 / 6-2

Prof. Dr. D. Freude, Prof. Dr. D. Michel
DOR and multi-quantum MAS NMR for high field NMR studies of quadrupole nuclei on
solids
DFG-Projekt FR 902 / 9-2

Prof. Dr. D. Freude, Dr. H. Ernst
Untersuchung der Protonen-Beweglichkeit in H-Zeolithen mit SFG NMR und MAS NMR
im Temperaturbereich bis 800 K.
DFG-Projekt FR 902 / 12-1

Prof. Dr. J. Kärger
Permeation of monomers in nanoporous host/guest-systems / Schwerpunktprogramm
”Nanoporöse Materialien”
DFG-Projekt Ka 953/13-1 und 13-2

Prof. Dr. J. Kärger
Molecular diffusion in nanoporous materials
DFG-CNRS-Project Ka953/14-1, Ka953/14-2

Prof. Dr. J. Kärger
Reaktion und Diffusion in Single-File Netzwerken: Computersimulationen und statistisch-
thermodynamische Untersuchungen.
DFG-Projekt KA 953/15-1

Prof. Dr. J. Kärger, Dr. F. Stallmach
Fourier-Transform-PFG-NMR mit starken Feldgradientenimpulsen zur selektiven Selbst-
diffusionsmessung.
DFG-Projekt KA 953/16-1

Prof. Dr. J. Kärger
Wasserbilanz in Hochleistungsbeton.
DFG-Projekt KA 953/17-1

Prof. Dr. J. Kärger
Studying Zeolitic Diffusion by Interference and IR Microscopy. DFG-Projekt KA 953/18-
1 within the International Research Group ”Diffusion in Zeolites”

Prof. Dr. J. Kärger
Development of new ceramics
EC-Project GRD1-1999-11207
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Prof. Dr. J. Kärger
New dealumination routes to produce transport-optimised catalysts for crude oil conver-
sion
EC-Project GRD2-2000-30364

Prof. Dr. J. Kärger, Dr. F. Stallmach
Diffusion optimation of microporous membranes and particle batches
EC-Project HPMD-CT-2000-00029

Prof. Dr. J. Kärger, Dr. F. Stallmach
PFG NMR investigations on technical catalysts
BASF AG

Dr. F. Stallmach, Prof. Dr. J. Kärger
NMR and MRI studies of aquifer rock
UFZ Halle-Leipzig GmbH

3.2.15 Organizational Duties

Participation in committees

Jörg Kärger
Ombudsman of Leipzig University
Membership in the Programme Committee ”Magnetic Resonance in Porous Media” (Ulm
2002, Paris 2004), ”Fundamentals of Adsorption” (Serona, Arizona, USA, 2004), Interna-
tional Zeolite Conference (Capetown 2004) and in the permanent DECHEMA committees
”Zeolites” and ”Adsorption”

Reviewing and refereeing duties

J. Kärger
Membership in Editorial Boards:
Microporous and Mesoporous Materials (European Editor)
Diffusion Fundamentals (Online Journal, Editor)
Adsorption
Referee: Phys. Rev., Phys. Rev. Lett., Europhys. Lett., J. Chem. Phys., J. Phys.
Chem., Langmuir, Micropor. Mesopor. Mat., PCCP, J. Magn. Res.
Project Reviewer: Deutsche Forschungsgemeinschaft, National Science Foundation
(USA)

D. Freude
Project Reviewer: Deutsche Forschungsgemeinschaft
Membership in Editorial Boards: Solid State NMR
Diffusion Fundamentals (Online Journal, Editor)
Referee: Chem. Phys. Lett., J. Chem. Phys., J. Phys. Chem., J. Magn. Res., Solid
State NMR
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B. Staudte
Referee: Micropor. Mesopor. Mat.

S. Vasenkov
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F. Stallmach
Referee: J. Magn. Res., Micropor. Mesopor. Mat., Phys. Rev. Lett.
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Kolloquium im Institut für Physikalische Chemie und Theoretische Chemie Technische
Universität Braunschweig, 23. Mai 2003 (inv. T)

J. Kärger
Structure - Dependent Molecular Diffusion in Nanoporous Materials
Kolloquium, Ludwig - Maximilians - Universität München, Center for NanoSciences
München, 28.11.2003 (inv. T)

J. Kärger
PFG NMR Diffusion Studies
Pre-Conference School of the Indo-Pacific Catalysis Association (IPCAT-3) Taipei, Tai-
wan, November 13–15, 2003 (inv. T)

J. Kärger
Structure - Mobility Relations in Zeolitic Diffusion
The Third Conference of the Indo-Pacific Catalysis Association (IPCAT-3), Taipei, Tai-
wan, November 16–18, 2003 (inv. T)
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alien
11.08.2003



3.2. PHYSICS OF INTERFACES 73

Diploma

Brzank, Andreas
Molecular Traffic Control in single-file Netzwerken
30.09.2003

Schneider, Denis
NMR-Untersuchungen an Protonenleitern
13.10.2003

3.2.19 Guests

Prof. Dr. Douglas M. Ruthven
University of Maine, since July 2003

Dr. Taro Ito
Sapporo, Juni 2003

Dr. Krysztof Banas
University of Krakov
as a Marie-Curie Fellow of the EC

Dr. Federico Brandani
University of Maine
as a Marie-Curie Fellow of the EC

Dr. Rustem Valiullin
University of Kazan
as an Alexander von Humdoldt fellow

3.2.20 Awards

Dr. Petrik Galvosas
FDI-Förderpreis Leipzig
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3.3 Polymer Physics

3.3.1 Space charge distribution in conjugated polymers

D. Geschke, F. Feller, U. Weber

The decay of space charge in conjugated polymers due to detrapping from deep traps
after the turn-off of an external bias has been investigated. A novel experiment was intro-
duced which allows measuring of time resolved laser intensity modulation method (LIMM)
spectra with a resolution of about 1 second. For this pyroelectric current transients have
been recorded at different temperatures from 220 to 360 K. The data have been analysed
assuming detrapping of charge carriers from single energy trap levels to a Gaussian dis-
tribution of transport levels to be the predominating process of the space charge decay.
In poly[2-methoxy,5-(2’-ethyl-hexyloxy)-p-phenylene-vinylene] (MEH-PPV) hole trapping
was found with a trap depth of Et = 0.6 eV and a trap density Nt > 2 × 1021 m−3. In
poly(2,5-pyridinediyl) (PPY) both, electron and hole trapping was observed and the anal-
ysis of the decays yield Et = 0.55 eV and Nt > 1021 m−3. No deep trapping could be
observed in poly (9,9-dioctylfluorene) (PFO) confirming the high chemical purity of this
polymer.

References:
Feller, F., Geschke, D., Monkman, A. P. Polymer 43 (2002) 4011-4016
Feller, F., Rothe, C., Tammer, M., Geschke, D., Monkman, A. P. Journal of Applied
Physics 91 (2002) 9225-9231
Feller, F., Geschke, D., Monkman, A. P. J. Phys.: Condens. Matter 14 (2002) 8455-8462
Feller, F., Geschke, D., Monkman, A. P. Polymer International 51 (2002) 1184-1189

In cooperation with:
A. P. Monkman, ”Organic Electroactive Materials” Group, Department of Physics, Uni-
versity of Durham, UK
J. Honerkamp, ”Statistical Data Analysis” Group, Freiburg Materials Research Center,
Freiburg, Germany

Financial support: DFG Ge 718 / 7-1

3.3.2 Funding

Raumladungsverteilung in konjugierten Polymeren
Prof. Dr. D. Geschke
DFG-Projekt Ge 718 / 7-1 (2001-2003)

3.3.3 Publications

Li, J., Stannarius, R., Tolksdorf, C., Zentel, R.
Hydrogen bonded ferroelectric liquid crystal gels in freely suspended film geometry
Phys. Chem. Chem. Phys. 5 (2003) 916-923
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Feller, F., Geschke, D., Monkman, A. P.
Decay of space charge in conjugated polymers measured using pyroelectric current tran-
sients
Journal of Applied Physics 93 (2003) 2884-2889

Bender, M., Holstein, P., Geschke, D.
Observation of echoes in reorientation processes of nematic liquid crystals
Journal of Magnetic Resonance 164 (2003) 35-43

Vartapetyan, R. Sh., Khozina, E. V., Chalykh, A. E., Skirda, V. D., Feldstein, M. M.,
Kärger, J., and Geschke, D.
Molecular Mobility in a Poly(ethylene glycol)-Poly(vinyl pyrrolidone) Blends: Study by
the Pulsed Gradient NMR Techniques
Colloid Journal 65 (2003) 684-690

3.3.4 Graduations

PhD

M. Sc. Frank Feller
Raumladungsverteilung in konjugierten Polymeren
14.04.2003

3.3.5 Visitors

Prof. Dr. C. Konak
(Visiting Professor of the AvH Foundation)
Czech Academy of Sciences, Institute of Macromolecular Chemistry, Prague
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3.4 Soft Matter Physics

3.4.1 General Scientific Goals -
Polymers and Membranes in Cells

Fig. 1: Cytoskeleton (i.e. intracellular polymer networks) of two neuronal cells. Actin
filaments are shown in red and microtubles are shown in green.

Studies of soft matter physics on the scale of nanometers to tens of microns, i.e., on
the scale of proteins and cells, in complex multifunctional biological matter - often far
from equilibrium and frequently behaving in a highly nonlinear manner - are the next big
challenge for physics. Our research group is based on the idea that a complete under-
standing of molecular and cell biological systems calls forth a new type of fundamental
physics, biological physics, which can describe biological soft matter with active elements
and which is adaptive to multipurpose. Over the last decade there has been tremendous
progress in molecular biology. Nevertheless, this progress will only impact the design
and development of new materials if a novel combination of nanosciences and soft mat-
ter physics is developed - bridging biology and engineering. This synergetic research in
physics, chemistry, bioengineering and biology simultaneously advances our fundamental
knowledge-base and provides novel applications in biomedicine and materials science.

The need for novel soft matter physics is exemplified in the actin cytoskeleton, an
active network of protein filaments and molecular machines found in biological cells, and
the plasma membrane, a complex liquid crystal material made out a wide variety of lipids
and proteins. In contrast to well-described, conventional materials the actin cytoskeleton
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and the plasma membrane are not a static materials they actively change in response
to various cellular functions (e.g. cell motility), conversely mechanical stimuli applied
to them directly feedback into cell function (e.g. mechanotransduction). Our division’s
specific goal is to unravel the biological physics of the actin cytoskeleton and the plasma
membrane. This complex soft matter with its active responses unmatched in the inani-
mate world and with its multiple functions requires an integrated approach which in vitro
investigates the motions and interactions of actin filaments, molecular motors, and lipids
on a single molecule level and in vivo measures the collective properties on a cellular level.
This guiding principle allowed us over the last years to identify the following key projects
described in the next sections, which clearly illustrate the unparalleled, fundamentally
new properties of the actin cytoskeleton and the plasma membrane.

The technical strength of our group lies in the synergetic and unique combination
of methods which allows us the study of the actin cytoskeleton and the plasma mem-
brane from a level of individual molecules in vitro to in vivo studies of the cellular actin
cytoskeleton with techniques which integrate novel microrheological techniques, optical
nanomanipulation, multiphoton microscopy, single particle tracking in Langmuir mono-
layers and molecular biology. We have pioneered the study of the polymer dynamics of
individual actin filaments in actin networks (e.g. direct visualization of reptation in actin
networks). For the first time we succeeded in visualizing the motions of single molecule
in lipid monolayers. We have developed a unique tool box to measure the viscoelastic
properties of individual cells locally by AFM-based microrheology as well as globally with
a new laser trap, the optical stretcher. These two techniques complement each other by
allowing us to obtain very detailed information from single cells as well as to screen large
numbers of cells. The AFM-based technique also allows us for the first time to measure
the forces that enable a motile cell to move forward. Furthermore, we have developed
novel approaches to use laser light to manipulate cells without touching them as we have
demonstrated with the optical stretcher and the optical neuron guidance.

(a) (b)

Fig. 2: Actin cytoskeleton of biological cells. (a) Actin cytoskeleton of a neuronal growth
cone visualized by transfection with GFP-actin. (b) Single actin filaments in vitro.
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3.4.2 Active Polymer Dynamics in Cells

David Smith, Vanessa Bell, Brian Gentry, Josef Käs

The molecular motor myosin II has not only the well-known force generating functions
in structures such as muscle cells; it can fluidize entangled actin networks by superseding
reptation dynamics with myosin-induced filament sliding. This illustrates how molecular
motors can overcome conventional polymer dynamics and generate an active material
with a new switchable viscoelastic behavior. Up to 40% of a cell’s energy (i.e. ATP)
turnover fuel this active, energy-dissipating states of the actin cytoskeleton illustrating
the importance for a cell’s material properties

Fig. 3: Comparison of the flow properties of actin networks with inactive (left side) or
active (right side) myosin dispersed in them. Under ADP conditions with inactive myosin
the samples gelated and behaved like an elastic solid. In the presence of ATP or when
caged ATP was released the active motors caused fluid-like flow properties.

As a subsequent step we will build a biomimetic copy of the lamellipodium, one of the
most dynamic parts of the actin cytoskeleton, and characterize its rheologic properties.
For this purpose, we will use a specially functionalized spherical microfluidic chamber
that promotes actin polymerization at its outer border and actin depolymerization to-
wards the center of the chamber. In this fashion, the reconstituted actin network in the
sample chamber displays the same retrograde flow found in cells. The outside coating
also cause an orientation of the actin filament’s plus ends and of the fork-shaped ends of
Arp 2/3 towards the outer rim of the microfluidic chamber. Rheology will be performed
by our AFM-technique and by two bead microrheology.

Publications: 1) D. Humphrey, C. Duggan, D. Saha, D. Smith and J. Käs, Active
fluidization of polymer networks through molecular motors, Nature, 416 413- 416 (2002)
For background see also: 2) J. Käs, H. Strey and E. Sackmann, Direct imaging of reptation
for semiflexible actin filaments, Nature, 368, 226-229 (1994)
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3.4.3 Molecular Motors and Entropic State of Polymer
Networks

David Smith, Vanessa Bell, Brian Gentry, Josef Käs

Besides the well known functions in contractility and transport molecular motors also
influence the spatial organization of actin filaments and microtubules. We found that with
increasing myosin-to-filament ratio the isotropic actin mesh continuously transforms first
into a network of filament bundles which then orders into a pattern of asters and at even
higher concentrations of the motor myosin to highly condensed actin coagulates. These
assemblies drastically depend on motor activity. Although fully active myosin minifila-
ments randomize, i.e. disorder, actin networks, ATP-depletion, which drastically slows
down motor function and makes the minifilaments to crosslinkers, cause the association
of supramolecular actin filament assemblies. In contrast, Dr. Surrey’s and Dr. Ned-
elec’s group at the EMBL in Heidelberg have seen that active motor constructs caused
aster formation and ordering in microtubule networks whereas inactive motors resulted
in the decay of this ordered structures. Nevertheless, both results clearly illustrate that
molecular motor activity impacts the spatial organization of the cytoskeleton.

Fig. 4: Fluorescence pictures of spatial patterns formed in actin-myosin networks at differ-
ent motor concentrations after ATP is used up: a) random mesh at 10 motors/ filament,
b) network of actin bundles at 102 motors/ filament, c) asters at 103 motors/filament, d)
strongly condensed phase at 104 motors/filament.



3.4. SOFT MATTER PHYSICS 81

In usual polymer systems order is frequently controlled by temperature as illustrated by
thermotropic liquid crystals. Temperature is a fixed parameter in biological cells. Thus,
motor activity may be an alternative variable - not known in conventional material science
- to control order and disorder. However, in the light of the contrasting effects observed for
microtubules and actin a fundamental understanding can be only found in collaboration
between the Leipzig and the Heidelberg group considering the differences and common
of the two biopolymer systems. Here also the collaboration with Dr. Amblard from Dr.
Joanny’s laboratory at the Institute Curie will be of great help. He has recently shown
that the fragment S1 of the protein myosin, the active subunit of myosin minifilaments,
increases the kinetic energy, i.e. the effective temperature, of an actin network when the
fragment is activated.

Publications:
1) A.L. Lin, B.A. Mann, G. Torres-Oviedo, B. Lincoln, J. Käs, H.L. Swinney,
Localization and extinction of bacterial populations under inhomogeneous growth
conditions, Biophys. J., in press (2004)
2) D. Smith, D. Humphrey, C. Duggan and Josef Käs, Molecular motor induced order
disorder transitions in polymer networks, Nature, submitted (2003)
For background see also:
3) Nedelec, F.J., Surrey, T., Maggs, A.C. and Leibler, S. Self-organization of
microtubules and motors, Nature 389, 305-308 (1997)

3.4.4 AFM-based Microrheology

Kristian Franze, Jens Gerdelmann, Bernd Kohlstrunk, Andreas Reichenbach, Thomas
Arendt, Wirtz, Josef Käs

Fig. 5: An AFM cantilever with a polystyrene bead of well-defined diameter is used
as a scanning tip to probe the viscoelastic and active responses of cells to deformation
forces. The entire AFM is mounted on an inverted microscope equipped for fluorescence
and phase contrast microscopy. The AFM is equipped with a temperature controlled
wet-cell to assure stable physiologic conditions for the cells.
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Atomic Force Microscopy (AFM) measurements of cell elasticity have been only of a
qualitative nature due to the complex, nonlinear deformation by standard AFM tips, hy-
drodynamic contributions of the cantilever, and deviations from the Hertz model caused
by finite sample thickness. Our new AFM-based microrheology allows us precise quantita-
tive measurements of the spatial distribution of a cell’s viscoelastic behavior (i.e. complex
shear modulus and Poisson ratio) and adhesive state. In particular, the active lamellipo-
dial regions of a cell show a viscoelastic signature similar to actin networks in vitro.
Thus, dynamic measurements of the viscoelastic changes will provide an understanding
of the actin-based active processes underlying cell motility, which will ultimately provide
a template for the design of active polymeric materials.

A particular focus of our microrheological studies have been questions related to
biomedical topics. These questions relevant to biomedicine are to what extent Alzheimer
disease causes a weakening in the structural strength of neuronal cells, whether drugs
that soften lung epithelial cells can reduce the risk of respiratory distress syndrome, and
whether structural defects in Miller cells are the cause of retinoschisis.

Publications:
1) S. Park, R. Cardenas, J. Käs, and C.K. Shih, Correlation between local viscoelasticity
and motility of fibroblasts, Biophys. J., submitted (2003)
2) R. Mahaffy, S. Park, E. Gerde, J. Käs, and C.K. Shih, Quantitative analysis of the
viscoelastic properties of thin regions of fibroblasts using atomic force microscopy,
Biophys. J., 86, 1777-1793 (2004)
For background see also:
3) R. Mahaffy, C.K. Shih, F.C, MacKintosh, and J. Käs, Scanning probe-based,
frequency-dependent microrheology of polymer gels and biological cells, Phys. Rev.
Lett., 85(4), 880-883 (2000)

3.4.5 Mechanotransduction

Jens Gerdelmann, Timo Betz, Bernd Kohlstrunk, Hubert Wirtz, Thomas Arendt, Josef
Käs

One of the most exciting results in cytoskeletal research of the last ten years was that
the cytoskeleton is not only involved in cell motility and mitosis by actively organizing
the cell, but also senses the cell’s mechanical environment and reacts to changes. For
this process the term mechanotransduction has been coined. Since the lung is an active
organ subjected to various mechanical forces, all cells of the lung have been implicated in
mechanotransduction events. A single mechanical stretch of alveolar type II epithelial cells
causes a transient increase in cytosolic Ca2+ mobilized from intracellular stores and fol-
lowed by a sustained increased pulmonary surfactant secretion. The specific mechanisms
how the mechanical stimuli are transmitted throughout mechanotransduction are not un-
derstood. The alveolar type II cells are particularly well suited to study the transduction
process since the response is immediate and not an indirect change in gene expression.
Furthermore, we study to what extent changes in mechanotransduction are involved in
the progression of Alzheimer disease.

AFM-based microrheology will provide a spatial map of the viscoelastic constants of
alveolar cells to determine a characteristic dissipation length, which limits the intracellular
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transmission of mechanical stimuli. By using the same AFM-techniques our laboratory
has recently demonstrated that growing neurons retract when opposed to a threshold
stress equaling their mechanical strength. For the alveolar cells, the threshold stress for
intracellular Ca2+-release and the cellular areas which respond preferred to mechanical
stimulation will be determined. These data, which will precisely characterize the initial
stimuli in mechanotransduction events, will provide a fundamental understanding how the
cytoskeleton as an active polymer network can function as a delicate mechanical sensor.

Fig. 6: Time series of a PC12 cell undergoing a critical force measurement by AFM.
The first two images demonstrate the negligible effect of the imaging forces on the for-
ward extension of the growth cone (size ≈ 5µm). Following this, a low force was applied
at a single point. Again, no effect was observed on the forward motion of the growth cone,
which then moved out of the current imaging range. After the necessary offset, a higher
force was applied and resulted in a significant change in the growth cone shape with some
withdrawal. At even higher forces the growth cone retracted from view. The critical force
corresponds to an approximate deforming stress on the growth cone of approximately
900 Pa. This withdrawal stress was verified on another cell with a value of approximately
1000 Pa. With time, the flat growth cone reformed, thus, demonstrating that although
the stresses forced a withdrawal, critical damage was avoided.

Publications:
1) M. Lakadamyali, J. Bayer, R.E. Mahaffy, N.L. Peffly, C.K. Shih, and J. Käs, Local
mechanosensing by neuronal growth cones, Nature, submitted (2003)
For background see also:
2) H. R. Wirtz et al, Calcium Mobilization and Exocytosis After One Mechanical
Stretch of Lung Epithelial Cells, 250, 1266-1269, Science, 1990
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3.4.6 Forces in Cell Motility

Claudia Brunner, Michael Gögler, Allen Ehrlicher, Bernd Kohlstrunk, Josef Käs

Cell motility is a fundamental objective in many disciplines, such as cell biology,
developmental biology, neuroscience, biomedicine and biophysics. Mechanisms of force
generation in cells, involving actin polymerization or molecular motors, have been de-
scribed in various models, but experimental data on measured forces hardly exist. Here
we present a direct in vivo measurement of the forward force generated by a fish epithe-
lial keratocyte. We attached a polystyrene bead to a cantilever-tip of an atomic force
microscope (AFM), positioned it in front of a cell, and pushed it slightly onto the plastic
surface of the Petri dish. The cell crawls underneath the bead and pushes therefore the
cantilever up. The forward force is calculated by the detected upward force using a simple
”wedge model”. The results might indicate different force mechanisms between the front
of the lamellipodium and regions near the cell body.

Fig. 7: Force exerted by a cell on an AFM-cantilever.

Publications:
1) C. Brunner, M. Gögler, A. Ehrlicher, and J. Käs, Propulsive forces of fast moving
cells, Nature, in preparation (2004)
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3.4.7 Optical Deformability as a Cell Marker

Falk Wottawah, Stefan Schinkinger, Bryan Lincoln, Susanne Ebert, Frank Sauer, Maren
Romeyke Frank Emmrich, Anderas Reichenbach, Torsten Remmerbach, Jochen Guck

To fully comprehend the role the multifunctional viscoelastic properties of the actin
cytoskeleton have for cells it is essential to measure the variability of cell elasticity within
and between cell lines. This requires high throughput measurements, which cannot be
provided by relatively slow techniques such as our AFM technique (the scans provide
precise local data, but need time). To accurately measure the variability of the elasticity
of whole cells within and between cell lines we have devised and built an optical tool with
an unprecedented force range (pN – nN) to stretch single cells between two laser beams,
the optical stretcher. By using a microfluidic setup for the optical stretcher, samples
with many cells can easily be handled similar to a flow cytometer. Our results show that
cells actively respond to deforming stresses and that optical deformability is a precise
cell marker, which allows diagnosing diseases such as cancer in which the cytoskeleton
dedifferentiates. Our finding that the elasticity of the actin cytoskeleton is a tightly
regulated cellular parameter illustrates the importance of the viscoelastic properties for
a cell’s state. Already samples of 50 cells are sufficient to obtain statistically significant
results. Due to the high sensitivity of this technique the optical stretcher can uniquely
distinguish different stages of the progression of cancer as demonstrated for breast cancer.
A commercial microfluidic optical stretcher is currently being developed together with a
Dresden based company, Gesim.

(a) (b)

Fig. 8: The optical stretcher. The upper part shows the microfabricated flow cham-
ber. The lower two pictures show the two laser beams stretching a fibroblast (diameter
≈ 30 µm) in phase contrast. Between the upper and the lower picture of the trapped
cell, the laser power has been increased from 10 mW to 800 mW. The optical fibers, not
drawn to scale, are 150µm away from the cell. This distance was chosen so that the beam,
diverging slightly from a 5 mm waist, illuminates the entire cell.

Publications:
1) J. Guck, H.M. Erickson, R. Ananthakrishnan, D. Mitchell, B. Lincoln, S. Schinkinger,
F. Wottawah, M. Romeyke, J. Käs, S. Ulvick, C. Bilby, Optical Deformability as
Inherent Cell Marker for Malignant Transformation and Metastatic Competence,
Biophys. J., submitted
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For background see also:
3) J. Guck, R. Ananthakrishnan, T.J. Moon, C.C. Cunningham and J. Käs, Optical
deformability of soft dielectric materials, Phys. Rev. Lett., 84(23), 5451-5454 (2000)
3) J. Guck, R. Ananthakrishnan, T.J. Moon, C.C. Cunningham and J. Käs, The Optical
Stretcher - A Novel, noninvasive tool to manipulate biological materials, Biophys. J., 81
767-784 (2001)

3.4.8 Biomolecular Machines Based on Active Viscoelasticity

Karla Müller, Revathi Ananthakrishnan, Maren Romeyke, Mireille Martin, Falk Wot-
tawah, Stefan Schinkinger,Attila Tarnok, Josef Käs

Due to their inherent elastic properties it is common in materials science that poly-
mers are used to generate well-defined mechanical properties. In cells a fundamental
aspect is added to providing structural support. The cytoskeleton is an active structure
participating in and responding to cell function. As a general rule, changes in the func-
tioning of a cell are mirrored in cytoskeletal changes. During malignant transformation
the cytoskeleton gets less pronounced and more disordered. In cancer metastasis the cy-
toskeleton transforms from a structural material, to an active machine, which propels a
metastatic cell through viscoelastic changes. Thus, precise measurements and a funda-
mental understanding of the dynamic viscoelastic properties are central to understand
the cytoskeleton as a guide for new active materials. For this purpose we measure cell
elasticity as a function of cytoskeletal composition and of cellular motility. In particular,
we consider the clearly visible active responses of the cytoskeleton to deforming stresses.

To determine the dependence of cell elasticity on the cytoskeletal composition we
transfect cells with oncogenes to induce changes in the molecular composition of the cy-
toskeleton. Using the optical stretcher to measure whole cell elasticity we particularly
pick transfected clones which represent the entire spectrum of achievable cell elasticities.
The elasticity data are then correlated with cytoskeletal architecture and composition by
Western blotting, RNA microarrays and multiphoton microscopy. The cytoskeleton is a
complex polymeric compound material which strain hardens, behaves highly nonlinear
and can actively respond to deformations. The cytoskeletal transformation to an active
cellular machine which is the driving force in cancer metastasis is exemplified when MCF-
7 cells, a breast tumor cell line, are treated with phorbolester and become motile. We
monitor the time course of the phorbolester-induced cytoskeletal changes by cell elasticity
measurements with the optical stretcher, which identifies time points of significant change
in cytoskeletal elasticity, and correlate this data with expression data of cytoskeletal pro-
teins obtained by RNA microarrays. Since we assume that these points represent the key
molecular events in the development to an actively advancing cell we use our AFM-based
microrheology to obtain a temporal and spatial map of the viscoelastic changes in the
lamellipodial region, i.e. leading edge of the cell, at these characteristic points. Despite
there is great knowledge about the proteins of the cytoskeleton multiple models for cell
motility have been proposed. Recent experiments in the Joanny lab at the Institute Curie
have shown that cell motility is solely based on the active material properties of the cy-
toskeleton. Nevertheless, the cytoskeleton is highly redundant. Our experiments have
the advantage that they correlate viscoelasticity with molecular architecture and they
monitor the changes from a non-motile to a motile cell. This allows us to extract the
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key elements which allow the cytoskeleton to become an active machine which advances
through viscoelastic changes. These data will be cross-fertilized by Dr. Joanny’s theoret-
ical work. He currently develops a model of cell motility based on an active viscoelastic
material. An experimental proven model of cell motility will be the ideal basis to develop
active biomimetic materials.

Fig. 9: Active response of a fibroblast to the mechanical stress exerted by the optical
stretcher.

Publications:
1) R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, Estimating the
Contribution of Actin Networks to the Elastic Strength of Fibroblasts, Biophys. J., in
press
2) F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M Romeyke, J. Guck,
J. Käs, Optical Rheology of Biological Cells, Phys. Rev. Lett., submitted

3.4.9 Optically Guided Neuronal Growth

Allen Ehrlicher, Timo Betz, Daniel Koch, Bjoern Stuhrmann, Michael Goegler, Elke West-
phal, Mark Raizen, Thomas Arendt, Bigl, Josef Käs

Understanding and controlling neuronal growth are fundamental objectives in bio-
physics, neuroscience, and biomedicine, and are vital for the formation of neural circuits
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in vitro, as well as nerve regeneration in vivo. The growth cone is a complex molecu-
lar machine, which is regulated by an intricate interplay of gene expression and signal
transduction events. These complicated molecular instructions are translated by the cy-
toskeleton into mechanical forces and active morphological changes by mechanisms, which
are not fully understood.

We have developed a laser-based method to guide neuronal growth cones, which has
been reported in PNAS [A. Ehrlicher et al. Guiding neuronal growth with light, PNAS,
99, 16024, (2002)]. Optical forces control the direction and speed taken by an actively
extending growth cone, as well as induce bifurcations of a growth cone. More recently,
we have seen that it is also possible to optically arrest growth cones and induce cell-cell
contacts between growth cones and other soma. Since laser-generated forces (e.g. optical
gradient forces) predominantly influence larger macromolecular ensembles, we assume that
the laser manipulates the cytoskeleton and that interactions with signaling molecules are
unlikely. The primary goals in this proposal are to identify the fundamental processes
underlying optical guidance, as well as to illuminate further the cytoskeletons role in
growth cone movement, branching, and the early stages of synaptogenesis. Moreover, we
have a new investigative tool to research the active cytoskeletal processes in growth cone
motility.

To understand the optomolecular basis of laser-directed neuronal growth and to elu-
cidate the cytoskeletal basis of growth cone motility, we propose the following six hypo-
thetical mechanisms, which we believe to be the most plausible in optical guidance: 1)
optical gradient forces biasing intracellular diffusion; 2) biased thermal ratchets at the
lamellipodial leading edge; 3) hindered retrograde flow of the actin network; 4) stresses
inducing Ca2+-release; 5) optical gradient forces directing filopodia (which are impor-
tant for growth cone steering); 6) intracellular reactions influenced by local laser heating.
From these hypotheses, we will identify the relative importance of each in optical guid-
ance through a series of decisive experiments and in turn we will clarify their relevance
in cytoskeletal dynamics.

Since the cytoskeletal machinery is responsible for all morphological changes of the
growth cone, a second series of experiments will examine directed arrest, bifurcation, and
cell-cell contacts. These experiments will investigate to what extent optically induced
bifurcations and growth cone-soma contacts show changes of the cytoskeleton similar to
cytoskeletal maturation found in neuronal branching and synaptogenesis.

Our two optical guidance setups are based on optical tweezers. In optical guidance
the laser interacts with intracellular processes, while in optical tweezers cellular structures
are mechanically moved. Inspired by promising preliminary results, we will conduct our
experiments with primary embryonic rat neurons, which are supplied by our collaborator
Prof. Arendt at the Paul-Flechsig Institute for Brain Research. In parallel, we will use
cell lines transfected with GFP-actin and YFP-tubulin to visualize the distributions of
these two essential cytoskeletal components during optical guidance. To investigate the
above mentioned hypotheses further, we will apply techniques well established in our lab,
such as multiphoton/confocal microscopy and atomic force microscopy.

In the long term, as we learn more about our system and improve our guidance tech-
niques, we will return our knowledge to the scientific community in the form of a novel non-
invasive laser-based tool for controlling neuronal growth and network formation. More-
over, our results on optomolecular interactions will provide a better understanding how
cytoskeletal dynamics morphologically change the growth cone.
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Fig. 10: Experimental setup for the optical guidance of growing neurons. A laser spot
(Ø= 2 – 16µm, power = 20 – 120 mW, λ = 800 nm) was placed with partial overlap in
front of an actively extending growth cone. The overlap area was chosen in the direction
of the preferred growth and to cover the actin cortex, which directly underlies the plasma
membrane and drives the advancement of the leading edge of the nerve.

Fig. 11: Optically guided turns of growth cones. Left side: Guided growth of a primary
embryonic rat cortical neuron. The square over the bright spot indicates the position of
the laser. The black line displays the desired optical guiding path. Right side: Guidance
of a PC12 growth cone. The circle indicates the position of the laser.
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Fig. 12: Optically induced cell-cell contact. The growth cone of a primary rat corti-
cal neuron was guided towards and put in contact with the soma of another primary
cell.

Publications:
1) A. Ehrlicher, T. Betz, B. Stuhrmann, D. Koch, V. Milner, M. Raizen and J. Käs,
Guiding neuronal growth with light, PNAS, 99(25) 16024-16028 (2002)
For background see also:
2) E. J. Furnish, W. Zhou, C.C. Cunningham, J. Käs, and C.E. Schmidt, Increased
actin severing via gelsolin overexpression enhances neurite outgrowth, FEBS Lett., 508
282 - 286 (2001)

3.4.10 Signal Transduction Investigated by Nano-probes

Florian Rückerl, Doug Martin, Martin Forstner, Undine Dietrich, Carsten Selle

In inhomogeneous 2-dimensional lipid monolayers with spatial domain structures (i.e.
obstacles) that can vary between nanometers and tens of microns the Brownian dynam-
ics of nano-probes (quantum dots and polystyrene beads) is studied by single particle
tracking. We specifically investigate the impact of dipole-dipole interactions between the
probe particle and lipid domains dispersed in a more fluid lipid matrix on local diffusion.
Our initial results indicate sharp transitions with increasing interaction strength between
extensive 2-dimensional diffusion among the domains of the monolayer and 1-dimensional
diffusion along the domain boundaries. In the transition regime 1- and 2-dimensional
diffusion behavior recurrently interchanges. Monte Carlo simulations predict that in the
long term limit this recurrent changes result in 2-dimensional normal diffusion with a
drastically decreased effective diffusion coefficient. However, it is also conceivable that in
future experiments subdiffusive behavior will be observed in the transition regime. Since
the radial dependence of dipole-dipole interactions can change conditional on domain
size and shape the diffusive behavior will critically depend on the 2-dimensional topogra-
phy of the monolayer. In synopsis, we plan to investigate how dipole-dipole interactions
in inhomogeneous films influence diffusive transport by controlling interchange between
transient events of localized 1-dimensional diffusion and extensive 2-dimensional diffusion.
This knowledge is a potential tool to enhance diffusion-limited biochemical reactions.

Inspired by observations of a wide variety of diffusive behaviors in cell membranes -
including spatially and temporally varying behavior and anomalous diffusion - diffusive
transport in lipid monolayers and bilayers has become of a broad scientific interest. From
a biological perspective specific lipid raft mixtures have been implicated in the control
of the diffusive behavior and of the potential landscape in lipid films. By and large,
theoretical work proposes that lipid domains as confining structures drastically slow down
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diffusive transport to a degree that anomalous diffusion can occur. Nonetheless, this
poses very specific conditions on the confining structures. Diffusion in a random maze
remains normal. However, if these confining random boundaries become attractive for the
Brownian driven probe particle the impediment of diffusive transport is more drastic and
depending on the specific attractive potential subdiffusion can arise. Since lipid domains
as well as membrane proteins exhibit dipole moments we have chosen to investigate the
basic Brownian dynamics of a probe particle in a confining landscape that has through
dipole-dipole interactions attractive boundaries.

The study of the fundamental Brownian dynamics in inhomogeneous lipid systems
requires the ability to follow the track of Brownian particles over a broad range of time
(0.01 – 1000 s) and length (10−7 – 10−2 m) scales and to control and vary the state of the
inhomogeneous landscape. For this purpose we developed a technique that allows us to
perform single particle tracking experiments on Langmuir monolayers overcoming previous
problems with the vibrational sensitivity and monolayer drift (M. Forstner, J. Käs and D.
Martin, Single lipid diffusion in Langmuir monolayers, Langmuir, 17(3), 567-570 (2001)).
In addition, our novel data analysis allowed us to demonstrate that previous reports of
subdiffusion in cell and model membranes were only apparent due to an artifact caused by
even small noise levels (D. Martin, M. Forstner and J. Käs, Apparent subdiffusion inherent
to single particle tracking, Biophys. J., 83 2109-2117 (2002)). More recent improvements
permit the simultaneous visualization of the Brownian dynamic of individual particles
and of the surrounding inhomogeneous landscape (M. Forstner, D. Martin, A.M. Navar,
and J. Käs, Simultaneous single-particle tracking and visualization of domain structures
on lipid monolayers, Langmuir, 19, 4876-4879 (2003)). This approach allowed us to
demonstrate that in the liquid-crystalline coexistence regime of DMPE-monolayers probe
particles switch between periods of 2-dimensional diffusion in the fluid phase and phases
of 1-dimensional diffusion along the liquid-crystalline domain boundaries (D. Martin, M.
Forstner and J. Käs, Dipole-dipole induced transitions in the dimensionality of diffusion,
PRL, submitted).

As probe particles we will use quantum dots and fluorescent beads (a few hundred
nanometers in diameter) since they provide the possibility to visualize simultaneously
the landscape (i.e. domains) of the monolayer by fluorescent techniques. They will be
either directly immersed in the monolayer or coupled to lipids by antibodies or peptides.
As monolayers we will use single lipids or fatty acids which are well known systems to
form domains in the liquid-crystalline coexistence regime. We will use systems where the
domains solely exhibit a net dipole moment (e.g. DMPE, DPPC) as well as systems where
the molecules of the monolayer are also charged (e.g. DMPA). The use of the different
lipids and fatty acids in conjunction with the direct control of the monolayer density
allows us to choose domain size, shape, and topology. The detailed tracks of the probe
particles enable us to analyze diffusion on a wide range of length and time scales. The
density distribution of the probe particle with respect to the domain boundaries provides
measurements of the energy landscape the particle feels. These experimental efforts will
be complemented by extensive Monte Carlo simulations. We have already developed
the required algorithms and software (D. Martin, M. Forstner and J. Käs, Dipole-dipole
induced transitions in the dimensionality of diffusion, PRL, submitted).
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Fig. 13: 200 nm fluorescent polystyrene bead (bright spot marked by the arrow) at the
boundary of the liquid expanded (light grey) and the liquid condensed phase (dark grey)
of a DMPE lipid monolayer at a surface pressure of 16.0 ± 0.5 mN/m. (b) Overlay of
the bead’s random walk on the monolayer picture. (c) Magnification of a portion of the
random walk close to the domain boundary.

It is one of the foremost properties of nature to be fare from equilibrium. Consequently,
this means that energy dissipating states stabilize ordered states. Thus, we will explore
to what extend the reaction-diffusion system formed by the lipid PIP2, the protein MAR-
CKS, and the enzymes protein kinase C and phospatase constitutes under ATP-hydrolysis
a nonlinear pattern forming system. Since the phase space is large and it is practically im-
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possible to find the right pattern forming conditions by trial-and-error our efforts will be
closely guided by theoretical modelling. Since PIP2 is a quintessential second messenger
in cells these findings would be of key relevance for cell biology.

Already in 1952 the British mathematician Alan Turing predicted that reaction-
diffusion systems can form nonlinear patterns. Despite of the nonequilibrium state of
nature reports about nonlinear pattern forming systems in biology remain sparse. Con-
sidering the eminent importance of PIP2 for signal transduction in cells the finding that
the MARCKS-PIP2 system is a nonlinear pattern forming system could have profound
implications, e.g. instabilities could serve as fast switches in cell signaling.

Nonlinear pattern forming reaction-diffusion systems are typically studied in steady
state reactors. This is practically impossible when we use Langmuir monolayers since a
steady supply of biochemical reactants would induce turbulent flows (note: also vesicular
systems do not allow a steady state exchange of the reactant lipids). Nevertheless, the
monolayers offer a large observation space which is necessary to determine the wavelengths
of the occurring patterns. Furthermore, the large monolayer surface and the extensive
subphase will provide large enough reservoirs to reach a quasi steady state, which should
allow us to observe pattern formation for sufficient long times.

Publications: 1) D. Martin, M. Forstner and J. Käs, Attractive interactions between
membrane structures and single particles drastically impact lateral diffusion, Phys. Rev.
Lett., submitted 2) D. Martin, M. Forstner and J. Käs, Apparent subdiffusion inherent to
single particel tracking, Biophys. J., 83 2109-2117 (2002) For background see also: 3) M.
Forstner, D. Martin, A.M. Navar, and J. Käs, Simultaneous single-particle tracking and
visualization of domain structures on lipid monolayers, Langmuir, 19, 4876 - 4879 (2003)
4) M. Forstner, J. Käs and D. Martin, Single lipid diffusion in Langmuir monolayers,
Langmuir, 17(3), 567-570 (2001)

3.4.11 Interaction of Functionalized Nanoparticles with
β-Amyloid Peptides

Herbert Schmiedel, Wolfgang Härtig

The general purpose of the project is the explanation of the structure and the physico-
chemical properties of nanoparticles acting as carriers of active ingredients in the treat-
ment of neurodegenerative deseases such as Alzheimer disease (AD). One hallmark of
brains in AD is the appearance of extracellular plaques consisting of amyloid-beta-peptide
aggregates (Aβ, usually comprising 40 – 42 amino acids). Polymer nanoparticles coated
with various agents (see e.g. /1/) were shown to penetrate the blood-brain barrier and
might interact with the Aβ plaques. Coated nanoparticles will be chosen for the in
vitro interactions between Aβ- aggregates and some of their specific ligands. This study
will include nanoparticles surface-labelled with: 1. b-sheet breaking low-molecular-mass
substances, 2. Aβ-specific antibodies and 3. Aβ itself (with appropriate spacers). In ad-
dition, several types of biotinylated nanoparticles will be developed as well-characterized
model polymers. We will then investigate their interactions with streptavidin and sub-
sequently between streptavidin-ensheathed nanoparticles with biotinylated Aβ-peptides
or biotinylated antibodies directed against Aβ.Due to the interdisciplinary character of
the project largely different methods can be applied to study the interaction of function-
alized nanoparticles with Aβ-aggregates. SANS /2/ (Small Angle Neutron Scattering)
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measurements will be performed to derive the structure of the active layers coating the
nanoparticles. QELS (Quasi Elastic Light Scattering) and ITC (Isothermic Titration
Calorimetry) measurements will be used to support the SANS results /3/. The distribu-
tion of the nanoparticles and its relevant Aβ-targeted compounds in animal tissues will
be studied by light and electron microscopy including multiple fluorescence labelling and
confocal laser scanning. First electron microscopic data on the delivery of the Aβ-binding
model compound thioflavin-T after injection of nanoparticles with encapsulated thioflavin
into the hippocampus of mice were recently published. /4/. Nanoparticles optimized by
the physico-chemical methods mentioned above should be tested for drug targeting in
animal models and might result in carriers for medical applications.

/1/ B.-R. Paulke, W. Härtig, G. Brückner. Synthesis of nanoparticles for brain cell
labelling in vivo. Acta Polymerica 43 (1992) 288-291.
/2/ H. Schmiedel, P. Jörchel, M. Kiselev, G. Klose. Determination of structural
parameters and hydration of unilamellar POPC/C12E4 vesicles at high water excess
from neutron scattering curves unsing a novel method of evaluation. J. Phys. Chem. B
105 (2001) 111-117.
/3/ R. Wang, H. Schmiedel, B.-R. Paulke. Isothermal Titration Calorimetric Studies of
Surfactant Interactions with negatively charged, ’hairy’ Latex Nanoparticles. Colloid &
Polymer Science (2004) in press.
/4/ W. Härtig, B.-R. Paulke, C. Varga, J. Seeger, T. Harkany, J. Kacza. Electron
microscopic analysis of nanoparticles delivering thioflavin-T after intrahippocampal
injection in mouse: implications for targeting β-amyloid in Alzheimer’s disease.
Neurosci. Lett. 338 (2003) 174-176.

3.4.12 Funding

Alexander von Humboldt Foundation, Euro 2.0 Mio, 2002 - 2005, ”Molecular structure
and function of biopolymer networks, characterized by novel laser trapping tools, nanorhe-
ology and single polymer microscopy”

Private Donation, Ms. Marianne Duda, Euro 40,000.-

Handelskammer Leipzig, Euro 8,000.-

Wechselwirkung beschichteter Nanopartikel mit Amyloid-Peptiden Interaction of func-
tionalized nanoparticles with b-amyloid peptides
Prof. H. Schmiedel (jointly with Dr. W. Härtig, Paul-Flechsig-Institut für Hirnforschung)
BMBF, 03DUO3LE (from 1/2003, within Bereich Neutronenstreuung)

3.4.13 Organizational duties

J.A. Käs
Beirat des Physikzentrums in Bad Honnef
Advisory committee for soft matter physics, NASA, USA
Prize committee, ”Freundlichste Auslaenderbehörde”, Alexander von Humboldt Founda-
tion
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Reviewing and Refereeing Duties
Journal review: Nature, Physical Review Letters, Physical Review E, Biophysical Journal,
Biophysica and Biochemica Acta, Biochemistry, Proceedings of the National Academy of
Science, European Biophysical Journal, Langmuir, Journal of Cell Biology Grant review:
National Science Foundation, Div. of Materials

Research; National Science Foundation, Div. of Cellular Organization; National Sci-
ence Foundation, Div. of Computational Biology; National Science Foundation, Div. of
Physics, Special Programs; Deutsche Forschungs Gesellschaft, Alexander von Humboldt
Foundation, Deutsche Studienstiftung, Centre National de Reserche, Israel Science Foun-
dation

3.4.14 External Cooperations

Academic

Prof. Dr. Michel Follen, MD Anderson Cancer Center, Houston, Texas

Prof. Dr. Harry Swinney, Center for Nonlinear Dynamics, Austin, Texas

Prof. Dr. Ken Shih, University of Texas at Austin

Prof. Dr. Mark Raizen, University of Texas at Austin

Prof. Jean-Francois Joanny, Institute Curie, Paris

Prof. Dr. Jacques Prost, ESPCI, Paris

Prof. Dr. Marie-France Carlier, Cea Saclay, France

Prof. Dr. Robert Austin, Princeton

Prof. Dr. Walter Zimmermann, University of Saarbruecken

Prof. Dr. Reinhardt Lipowsky, MPI for Colloids, Golm

Prof. Dr. Frank Juelicher, MPI for Complex Systems, Dresden

Dr. Markus Bär, MPI for Complex Systems, Dresden

Dr. Silvio May, MPI for Complex Systems, Dresden

Dr. Kurt Andersen, MPI for Cell Biology, Dresden
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Industry

Nimbus GmbH, Leipzig

jpk Instruments, Berlin

EuroPhoton GmbH, Berlin

Evotec GmbH, Berlin

Gesim GmbH, Dresden

Euroderm, GmbH, Leipzig

3.4.15 Publications

Journals

1) M. Forstner, D. Martin, A.M. Navar, and J. Käs, Simultaneous single-particle tracking
and visualization of domain structures on lipid monolayers, Langmuir, 19, 4876 - 4879
(2003)

2) R. Mahaffy, C.K. Shih, F.C. MacKintosh, and J. Käs, Quantitative analysis of the
viscoelastic properties of thin regions of fibroblasts using atomic force microscopy, Bio-
phys. J., 86, 1777-1793 (2004)

submitted, in press

3) A.L. Lin, B.A. Mann, G. Torres-Oviedo, B. Lincoln, J. Käs, H.L. Swinney, Localization
and extinction of bacterial populations under inhomogeneous growth conditions, Biophys.
J., in press (2004)

4) R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, Estimating the Con-
tribution of Actin Networks to the Elastic Strength of Fibroblasts, Biophys. J., in press

5) F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M Romeyke, J. Guck,
J. Käs, Optical Rheology of Biological Cells, Phys. Rev. Lett., submitted

6) J. Guck, H.M. Erickson, R. Ananthakrishnan, D. Mitchell, B. Lincoln, S. Schinkinger,
F. Wottawah, M. Romeyke, J. Käs, S. Ulvick, C. Bilby, Optical Deformability as Inher-
ent Cell Marker for Malignant Transformation and Metastatic Competence, Biophys. J.,
submitted

7) D. Martin, M. Forstner and J. Käs, Attractive interactions between membrane struc-
tures and single particles drastically impact lateral diffusion, Phys. Rev. Lett., submitted

8) S. Park, R. Cardenas, J. Käs, and C.K. Shih, Correlation between local viscoelas-
ticity and motility of fibroblasts, Biophys. J., submitted (2003)
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9) M. Lakadamyali, J. Bayer, R.E. Mahaffy, N.L. Peffly, C.K. Shih, and J. Käs, Lo-
cal mechanosensing by neuronal growth cones, Nature, submitted (2003)

10) R. Wang, H. Schmiedel, B.-R. Paulke. Isothermal Titration Calorimetric Studies
of Surfactant Interactions with negatively charged, ’hairy’ Latex Nanoparticles. Colloid
& Polymer Science (2004) in press.

Invited Talks

Josef Käs

15.1.2003 - Colloquium, MPI for Math. in the Sciences, Leipzig
Dynamics of actin filaments

24.1.2003 - Biophysics colloquium, EMBL, Heidelberg
The physics of the actin cytoskeleton

26.02.-10.03.2003 - APS-meeting Austin, Texas
Molecular Motors Fluidze Polymer Networks

17.3.2003 - Seminar, MPI for Complex Systems, Dresden
The physics of the actin cytoskeleton

19.3-22.3.2003 - Meco, Universität Saarbrücken
Polymers in Cells: A journey from fundamental polymer physics to cancer diagnosis and
neuronal growth

23.4.2003 - Rotary Club, Leipzig
Manipulating Cells without Touching Them

12.05.-13.05.2003 - Soft Matters, MPI for Colloids, Golm
Polymers in Cells: A journey from fundamental polymer physics to cancer diagnosis and
neuronal growth

17.5.2003 - Campus03, Universität Leipzig
Laser - berührungslose Finger für biologische Zellen

05.06. 2003 - Biophysics colloquium, Universität Heidelberg
Polymers in Cells: A journey from fundamental polymer physics to cancer diagnosis and
neuronal growth

10.6.2003 - Physics colloquium, Otto-von-Guericke-Universität, Magdeburg
Polymers in Cells: A journey from fundamental polymer physics to cancer diagnosis and
neuronal growth

03.07. 2003 - Biology colloquium, Universität Rostock
The actin cytoskeleton: A journey from fundamental polymer physics to cancer diagnosis
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and neuronal growth

04.09.-11.09.2003 - Advanced Immunological Techniques, Epona Ungarn
Manipulating Cells without Touching Them: Laser-based Analysis and Control of Eu-
karyotic Cells

20.10.-24.10.2003, Cell, MPI for Complex Systems, Dresden
Polymers in Cells: A journey from fundamental polymer physics to cancer diagnosis and
neuronal growth

06.11.2003 - Physics colloquium, Martin-Luther-Universität Halle-Wittenberg
Polymers in Cells: A journey from fundamental polymer physics to cancer diagnosis and
neuronal growth

14.11.2003 - Nanoscience colloquium, Ludwigs-Maximillian Universität, München
Polymers in Cells: A journey from fundamental polymer physics to cancer diagnosis and
neuronal growth

18.-21.11.2003, Soft Matter Days, KFA Jülich
Polymers in Cells: A journey from fundamental polymer physics to cancer diagnosis and
neuronal growth

09.12.2003 - Physics colloquium, Universität Stuttgart
Polymers in Cells: A journey from fundamental polymer physics to cancer diagnosis and
neuronal growth

Jochen Guck

25.02.2003
Jochen Guck, ”Stretching Cells with Light”, Symposium ”Cancer and Photonics”, Hei-
delberg

04.03.2003
Jochen Guck, ”Stretching Cells with Light”, American Physical Society Meeting, Austin,
U.S.A.

05.03.2003
Jochen Guck, ”Stretching Cells with Light”, Biophysical Society Meeting, San Antonio,
U.S.A.

31.03.2003
Jochen Guck, ”Stretching Cells with Light”, Seminar Biologische Physik, Max- Planck-
Institut für die Physik komplexer Systeme, Dresden

22.05.2003
Jochen Guck, ”Stretching Cells with Light”, Theorie-Seminar, Hahn-Meitner-Institut
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Berlin

26.05.2003
Jochen Guck, ”Stretching Cells with Light”, Seminar Nichtlineare Dynamik, Universität
Magdeburg

24.06.2003
Jochen Guck, ”Stretching Cells with Light”, Seminar, Arbeitsgruppe von Marie- France
Carlier, C.N.R.S., Gif-sur-Yvette, Frankreich

25.06.2003
Jochen Guck, ”Stretching Cells with Light”, Kolloquium, Institut Curie, Paris, Frankreich

Conference Contributions

(p: poster, t: talk)

16.01.2003
”Bio-Optical Neuron Guidance & Growth Cone Motility”, Seminarvortrag, Universität
Leipzig

23.01.2003
”Optical Cell Guiding”, Michael Gögler, Seminarvortrag, Universität Leipzig

02.03.2003
”Self Assembly and Spatial Structure in Actin Networks”, Brian Gentry, Biophysical So-
ciety Annual Meeting, San Antonio, Texas, USA p

04.03. 2003
”Mimicking temperature through molecular machines”, David M. Smith, Biophysical So-
ciety Meeting, San Antonio, Texas, USA

04.03.2003
”Guiding neuronal growth with light”, Timo Betz, Annual Meeting of the Biophysical
Society, San Antonio, Texas, USA

04.03.2003
”Self Assembly and Spatial Structure in Actin Networks”, Brian Gentry, APS Annual
Meeting, Austin, Texas, USA

06.03.2003
”Order-disorder-transitions in polymer networks through molecular motors”, David M.
Smith, American Physical Society Annual Meeting, Austin, Texas, USA

01.-05.03.2003
”The viscoelasticity of the cytoskeleton”, Stefan Schinkinger et al., Biophysical Society
Meeting, San Antonio, Texas, USA
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01.-05.03.2003
”Mechanical properties of murine Müller cells”, Kristian Franze, Neurobiology Confer-
ence, Göttingen

12.05.2003
”Vesicles in the Optical Stretcher”, Frank Sauer, Max-Planck-Institut Potsdam/Golm

07.05.2003
”Guiding neuronal growth with light”, Allen Ehrlicher, American Physical Society, ses-
sion on Neurobiological Physics

12.-13.05.2003
”Optical guidance of growth cones” und ”Guiding cells with light”, Allen Ehrlicher et al.,
Soft Matters 2003 Bilateral Symposium, MPI for Colloids and Interfaces, Golm

13.05.2003
”Order-disorder-transitions in polymer networks through molecular motors”, David M.
Smith, Soft Matters 2003, MPI-KG, Potsdam/ Golm

14.-16.05.2003
”Characterization of cellular growth in 3D polymer scaffolds”, Susanne Ebert, Konferenz
”Interface Biology of Implants”, Universität Rostock

17.05.2003
”Optical cell guidance”, Allen Ehrlicher et al., Tag der Universität Leipzig ”Campus
2003”, Innenstadt Leipzig (Filmvorführung)

21.05.2003
”Stretching cells with light”, S. Schinkinger et al., 2. Biotechnologietag, Universität
Leipzig

21.05.2003
”Guiding cells with light”, Allen Ehrlicher et al., 2. Biotechnologietag an der Universität
Leipzig, Biotechnologisch-Biomedizinisches Zentrum, Leipzig

21.05.2003
”Mechanical properties of Müller cells”, Kristian Franze, 2. Biotechnologietag, Leipzig,

03.-06.09.2003
”Mechanical properties of Müller cells”, Kristian Franze, Euroglia 2003, Berlin

12.-15.06.2003
”Bio-optical neuron guidance”, Daniel Koch et al., 29th Göttingen Neurobiology Confer-
ence 2003

12.-15.06.2003
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”Biomechanical properties of Müller cells”, Kristian Franze, Neurobiology Conference,
Göttingen

24.09.2003
”Mechanical & Optical Properties of Müller cells”, Kristian Franze, Paul-Flechsig-Institut,
Leipzig

28.-30.09.2003
”Isothermal Titration Calorimetric Studies (ITC) of Ionic Surfactant Interactions with
Charged Latex Nanoparticles”, R. Wang, 42th Biennial Meeting of the Germany Colloid
Society in conjunction with Bayreuth Polymer Symposium 2003, Bayreuth

21.10.2003
”Optical guidance of growth cones”, Timo Betz, Workshop and Seminar ”Motion, sensa-
tion and self-organization in living cells”, Dresden

24.10.2003
”Pressure on neurodegeneration”, Jens Gerdelmann et al., 2nd Research Festival for Life
Sciences 2003

24.10.2003
”Bio-optical neuron guidance”, Allen Ehrlicher et al., 2. Research-Festival 2003, Max-
Bürger-Forschungszentrum, Interdisziplinäres Zentrum für Klinische Forschung (IZKF),
Leipzig

24.10.2003
”Electron microscopic analysis of nanoparticles delivering thioflafin-T after intrahippocam-
pal injection in mouse: Implications for targeting beta-amyloid in vivo”, W. Härtig et al.,
2nd Leipzig Research Festival for Life Sciences, Leipzig

24.10.2003
”ITC Study of Interaction between Surfactant and Charged Latex Particle”, R. Wang,
2nd Leipzig Research Festival for Life Sciences, Leipzig

24.10.2003
”Mechanical properties of Müller cells”, Kristian Franze, Leipzig Research Festival for
Life Sciences, Leipzig

06.11.2003
”Mechanical & Optical Properties of Müller cells”, Kristian Franze, Abt. Physik weicher
Materie, Universität Leipzig

13.11.2003
”Vesicles in the Optical Strecher”, Frank Sauer, Seminarvortrag, Universität Leipzig
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4

Institute for Experimental Physics II

4.1 Nuclear Solid State Physics

4.1.1 The high-energy ion nanoprobe LIPSION

T. Butz, D. Lehmann, H. N. da Luz, Ch. Meinecke, F. Menzel, T. Reinert, D. Spemann,
W. Tröger, J. Vogt

The high-energy ion nanoprobe LIPSION at the University of Leipzig has been op-
erational since October, 1998 (Fig. 1). Its magnetic quadrupole lens system, arranged
as a separated Russian quadruplet, was developed by the Microanalytical Research Cen-
tre (MARC), Melbourne and has a symmetrical demagnification factor of about 130.
The single-ended 3 MV SINGLETRONTM accelerator (High Voltage Engineering Eu-
ropa B.V.) supplies H+ and He+ ion beams with a beam brightness of approximately
20 A·rad−2m−2eV−1. Due to this high brightness, the excellent optical properties of the fo-
cusing system of the nanoprobe and the suppression of mechanical vibrations by founding
the bed-plates of accelerator and probe in greater depths separately from the surround-
ings, lateral resolutions below 100 nm for the low current mode (STIM) and 300 nm at a
current of 10 pA (PIXE) were achieved routinely. A beam diameter of 41 nm was achieved.
The UHV experimental chamber is equipped with electron, X-ray, and particle detectors
to detect simultaneously the emitted secondary electrons (Ion Induced Secondary Elec-
tron Emission, SE), the characteristic X-rays (Particle Induced X-Ray Emission, PIXE),
as well as the backscattered ions (Rutherford Backscattering Spectrometry, RBS) and -
in case of thin samples - the transmitted ions (Scanning Transmission Ion Microscopy,
STIM, and Scanning Transmission Ion Micro-Tomography, STIM-T). A newly installed
optical microscope allows sample positioning and inspection during measurement. The
magnetic scanning system moves the focused beam across the sample within a scan field
of adjustable extent. The data collection system MPSYS (MARC Melbourne) collects
and stores the spectra of the several techniques at any beam position (Total Quantitative
Analysis, TQA). In addition, optional windows can be set in the spectra for real-time el-
emental mapping. The pictures are viewed and printed as two-dimensional colour-coded
intensity distributions.
The installation of an active compensation system of stray magnetic fields using Helmholtz-
coils (see Fig. 1) yields compensation factor in excess of 100 and proved very useful. The
installation of an irradiation platform designed for single ion bombardment of living cells

103
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allows first patterned irradiations and hit verification tests.

Fig. 1: LIPSION laboratory.

Current work in nuclear nanoprobe performance is focused on:

1. installation of a new target chamber with a UHV-x,y,z-translation stage and eucen-
tric goniometer; the chamber can also be converted into a new irradiation platform
for living cells with microscope access from the rear.

2. replacement of the old data acquisition system by the new MicroDAS MARC (Mel-
bourne)

3. computer controlled ion beam writing

Accelerator Statistics 2003:

operating hours: 1500 h
maintenance and conditioning: 90 h

4.1.2 Ion beam micromachining

F. Menzel, D. Spemann, J. Vogt, J. Lenzner, H. Herrenberger, T. Butz

Within the framework of the research group ”Architecture of nano- and microdimen-
sional building blocks” (FOR 522) first micromachining experiments were performed.
Micromachining allows to create structures e.g. for microoptical and micromechanical
applications in photoresist via direct proton beam writing and subsequent etching. In
the first experiments simple structures (Fig. 2a) were produced in SU-8 resist in order to
study the effect off different ion fluence on the quality of the structures. Figure 2b shows
that the edge precision which can be obtained with the existing target chamber is better
than 200 nm. A new target chamber equipped with a very precise sample manipulation
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stage is currently under construction and will allow to produce structures with even better
edge definition. Furthermore, a dedicated beam scanning system for micromachining of
arbitrarily shaped structures is under development.

Fig. 2: (a) REM image of a structure produced in SU-8 by direct proton beam micro-
machining and (b) of the bottom left edge of the same structure. The edge precision is
better than 200 nm.

4.1.3 Analysis of ZnO-microwhiskers and RBS-simulation of
microstructures

Ch. Meinecke, J. Vogt, T. Butz

Within the framework of the DFG project ”Architecture of nano- and microdimen-
sional building blocks” we will investigate nanoscopic structures with the method of ion
beam analysis µPIXE. In cooperation with the Semiconductor Physics group (HLP) we
analysed the composition of microdimensional ZnO-whiskers, which were produced in the
HLP group. Therefore the ion beam was focused down to below 1 µm to resolve the
microdimensional ZnO-whisker. Due to this high spatial resolution it was possible to
determine the elemental composition of the ZnO-microwhisker.
Figure 3 (left) shows the PIXE-map for zinc. The scan area was approx. 19 µm × 19 µm;
Figure 3 (right) shows the REM-picture of the same zinc whisker.
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Fig. 3: Lateral distribution of zinc (left) and a REM-picture of the same ZnO-microwhisker.
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Figure 4 shows the distribution of the elemental concentrations of various elements across
the traverse, which is approx. 9 µm long, indicated in figure 3 (left). The detection of gold
is no surprise because gold dots were used to initiate the whisker growth. However we
found that this sample includes contaminations of other elements, so that the preparation
setup has to be improved.
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Fig. 4: Elemental distribution along the line scan, indicated in the left part of Fig. 3.

Furthermore we develop simulations for three-dimensional RBS-analysis. First, we
simulated RBS-spectra of a gold coated glass rod with a diameter of 2 µm. Experiments
with the new faceted RBS-detector are in preparation.

4.1.4 Ion beam analysis of epitaxial (Mg, Cd)xZn1−xO and
ZnO:(Li, Al, Ga, Sb) thin films grown on c-plane sapphire

D. Spemann, E.M. Kaidashev, M. Lorenz, J. Vogt, T. Butz

ZnO thin films, nominally undoped, doped with Li, Al, Ga, and Sb and alloyed with
Mg and Cd grown epitaxially on c-plane sapphire by pulsed laser deposition (PLD) were
investigated. In order to correlate the optical and electrical properties, e.g. the band
gap energy and carrier concentration, to the elemental composition, the films were ana-
lysed by Rutherford Backscattering Spectrometry (RBS), Particle Induced X-ray Emission
(PIXE), and Particle Induced γ-ray Emission (PIGE) using He+ and H+ ion beams. It
was found that the element transfer from the PLD target to the film differs significantly
for the individual doping and alloying elements, with concentration ratios between film
and target ranging from approx. 4% for Li and Cd to approx. 400% for Ga. In general,
the films exhibited a metal to oxygen ratio of 1:1, only the ZnO:Li films were slightly
oxygen deficient.
Furthermore, the crystalline quality of the films was investigated using ion channeling.
The nominally undoped ZnO films which were deposited with low-temperature interlay-
ers in order to reduce the lateral stress showed a normalized minimum RBS yield of
χmin=3.3% under channeling conditions, a value which underlines the high crystal qual-
ity. Whereas the incorporation of isovalent alloying atoms into the ZnO films leads to
a slight degradation of the crystalline quality only, doping degrades the crystalline qual-
ity remarkably, even at low dopant concentrations (see Fig. 5). This indicates that the
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dopant atoms do not reside on regular Zn lattice sites (for one ZnO:Li film this could be
proved by the Li-RBS yield under channeling conditions) and/or that the incorporation
of a dopant atom leads to a locally strained lattice around the atom, possibly associated
with a trapped defect or impurity atom. Both crystalline distortions lead to an increased
backscattering yield under channeling conditions.

Fig. 5: Normalized minimum yield χmin from ZnO-based films doped or alloyed with
various elements at different concentrations. In general, the crystalline quality degrades
with increasing concentration, but to a different extent for doping and alloying elements.
Whereas alloying (Mg and Cd) leads to a slight degradation of the crystalline quality only,
the incorporation of doping atoms (Li, Al, Ga, and Sb) results in a significant degradation
of the crystalline quality, even at low dopant concentrations.

4.1.5 Ion beam analysis of CIGS solar cells on polyimide foil

D. Spemann, K. Otte, M. Lorenz, T. Butz

Solar cells based on Cu(In,Ga)Se2 (CIGS) absorber layers are one of the most promis-
ing thin film solar materials and stand on the edge of a profitable industrial realization.
Photovoltaic conversion efficiencies of up to 19.2% have been achieved. Mechanically
flexible thin film solar cells based on CIS absorbers deposited on polyimide foils by the
Solarion company were investigated in the ion beam laboratory LIPSION of the Univer-
sity of Leipzig by means of Rutherford Backscattering Spectrometry (RBS) and Particle
Induced X-ray Emission (PIXE) using high energy broad ion beams and microbeams.
From these measurements the composition of the absorber as well as the lateral homo-
geneity and the film thicknesses of the individual layers could be determined under some
reasonable assumptions. For the first time, quantitative depth profiling of the individual
elements was performed by microPIXE measurements on a bevelled section of a CIS solar
cell consisting of the following layers: polyimide / Mo / CIS / CdS / ZnO (see Fig. 6).
The bevelled section was prepared at the Leibniz-Institute for Surface Modification (IOM)
Leipzig using ion beam etching with 500 eV nitrogen ions. The depth profiling is per-
formed using the K-X-ray lines of the elements Mo, Cu, In, Se, Cd, and Zn.
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Fig. 6: Schematic of a bevelled section of a CIS solar cell.

Figure 7a shows the normalized X-ray yields from selected elements normalized to the
values observed on the non-etched part of the solar cell. The observed yields from Cu, In,
and Se were used to calculate the composition of the CIS absorber as a function of depth
(Fig. 7b). For this purpose, the measured yields were compared with theoretical ones
calculated from GeoPIXE II in order to correct for the varying thickness of the CIS ab-
sorber. The depth profiling by PIXE yielded no significant concentration-depth-gradients
of Cu, In, and Se in the CIS absorber layer within the experimental errors, contrary to
the SNMS depth profiling which was applied on the same samples for comparison. The
values at a thickness of 0.01 mg/cm2, i.e. the remaining 20 nm of the absorber after ion
beam etching, should not be considered significant as they are very likely influenced by
the ion beam etching. Furthermore, both PIXE and SNMS show a remarkable amount of
Cd from the CdS buffer layer in the underlying absorber and the Mo / CIS-interface. The
diffusion-like profile of Cd(S) within the absorber results most probably from the fact that
the CdS covers the surface of the CIS crystallites accessible to it in the polycrystalline
absorber. In addition, diffusion of Cd(S) may either (i) occur naturally in CIS or (ii) is
promoted by the ion sputtering used in SNMS and for the preparation of the bevelled
section. The possibility of Cd diffusion into the CIS absorber layer has to be taken into
consideration carefully for the future optimization of the deposition processes.

Fig. 7: (a) Normalized K-line X-ray yields extracted along bevelled section. (b) Compo-
sition of the CIS absorber as a function of depth.



4.1. NUCLEAR SOLID STATE PHYSICS 109

4.1.6 Ferromagnetism in highly oriented pyrolytic graphite
induced by proton irradiation

D. Spemann, K.-H. Han, P. Esquinazi, R. Höhne, A. Setzer, T. Butz

Ferromagnetic ordering in highly oriented pyrolytic graphite samples was created by
high energy proton irradiation using broad ion beams and microbeams. Simultaneously,
the impurity content was checked using Particle Induced X-ray Emission (PIXE). Due to
the excellent sensitivity of better than 0.5 µg/g of PIXE for metallic impurities like Fe,
it was possible to exclude the possibility of metallic impurities as a cause of the observed
ferromagnetism. This work was done in close co-operation with the Superconductivity
and Magnetism group (SUM). For more details see the reports of SUM.

4.1.7 Skin as a barrier to ultra-fine particles

F. Menzel, T. Reinert, E. Ahmed Mohamed, U. Anderegg ∗), M. Sticherling ∗), J. Vogt,
T. Butz

∗) Klinik und Poliklinik für Dermatologie, Universität Leipzig

Micronised TiO2 particles used in sunscreens as physical UV filters are suspected to
pass through the horny stratum corneum into vital skin layers via intercellular channels,
hair follicles, and sweat glands. However, this penetration is undesirable because of its
possible impact on human health. For example, the particles can activate the immune
system and accumulations of these particles in the skin can decrease the threshold for
allergies [1]. The function of the stratum corneum as a barrier against dermal uptake
of ultrafine particles was the subject of several investigations which came to different
conclusions concerning the penetration depth of the particles [2,3]. Most of these studies
used the method of tape stripping which is relatively imprecise in comparison with the
spatially resolved methods of ion beam analysis PIXE, RBS, ERDA, STIM and SEI we
carried out on freeze dried cross sections of porcine skin which was exposed to different
TiO2 containing formulations.

These investigations concentrate on the influence of different kinds of pretreatment
procedures, e.g. wetting the skin and removing the stratum corneum, and of different
TiO2 containing formulations on the barrier function of skin.

For the evaluation of the RBS data the hydrogen content of the sample material must
be known. For this purpose a new method for the determination of the hydrogen content
was developed which uses a recursive fitting algorithm of ERDA and RBS data.

The skin layers were identified by their different contents of phosphorus, sulfur, chlo-
rine, potassium and calcium determined with PIXE (see Fig. 8). The concentration of
titanium and its penetration depth was also determined with this method.

These investigations show that most of the applied TiO2 remained on the skin surface
or penetrated just into the stratum corneum. A close inspection of the traverses indicats
that a small amount of the TiO2 penetrates into the vital startum granulosum. But no
indications for a penetration into deeper skin layers were found up to now.
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Fig. 8: Three element image of phosphorus, titanium and sulphur (left) and map of ti-
tanium distribution with marked region of interest (right) of pig skin exposed to TiO2

containing polyacrylatgel after water application (424 µm × 193 µm).

[1] B. Granum, P.I. Gaarder, E.-C. Groeng, R.-B. Leikvold, E. Namork and M. Løvik,
Toxicology Letters 115 (2001) 171-181.
[2] F. Pflücker, V. Wendel, H. Hohenberg, E. Gärtner, T. Will, S. Pfeiffer, R. Wepf and
H. Gers-Barlag, Skin Pharmacol Appl Skin Physiol 14 (2001) 92-97.
[3] M.-H. Tan, C. A. Commens, L. Burnett and P.J. Snitch, Australasian Journal of
Dermatology 37 (1996) 185-187

4.1.8 Hit precision for targeted bombardment of living cells
with single ions

T. Reinert, A. Fiedler, J. Škopek, J. Tanner, J. Vogt, T. Butz

It was often stated that the advantages of scanned focused ion beams for radiobiolog-
ical applications are easily lost due to formidable difficulties arising from the horizontal
configuration of the microprobes and the need of a beam exit window [1,2]. Despite these
restrictions we try to overcome these difficulties in taking advantage of our system. Cur-
rently we are developing our existing horizontal nuclear microprobe for radiobiological
applications. Our key objective is the investigation of the cellular response to targeted
irradiation with light ions (H+, He+), especially the radiation induced bystander effect [3].
This effect is, in short, the radiation related response of non-irradiated cells neighboring
an irradiated cell. For these studies a precise targeting on the cells is mandatory. Fur-
thermore, the measurement of the number and energy loss of the ionising particles within
the cell determines precisely the applied dose. The next challenging step is to precisely
determine and to target on selected positions for the irradiation within the cells, e.g. to
distinguish between the cytoplasm and the cell nucleus or even between smaller struc-
tures within the cell. Therefore, we developed an irradiation platform for living cells at
the high-energy ion nanoprobe laboratory LIPSION. The platform enables the irradiation
of living cells in a mini-Petri dish with as little medium as possible in a vertical position
and the detection and energy loss measurement of the transmitted projectile ions. Tech-
nically, our primary concern is to increase the hit accuracy to below 1µm. Therefore,
we use thin Si3N4 windows as beam exit and in the Petri dish bottom. Scientifically, our
studies started with adhesion, survival, and sedentariness tests with endothelial cells and
first patterned irradiation experiments.

In order to determine the hit accuracy, tests on CR-39 with different patterns were
performed. The CR-39 foil was glued onto the bottom of the mini-Petri dish and irradi-
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ated through the exit window. Since the protons of 2.25 MeV cannot penetrate the thick
CR-39 foil we could not detect single events. Therefore, we set up the beam intensity to
about 3000 protons per second. At each target position the beam gate was opened for
1 ms enabling the passage of three protons on average. We wrote a 10 × 10 dot pattern
and the word “LIPSION” with dots separated by 2µm (Fig. 9, left). The statistical anal-
ysis of the hit positions revealed a hit accuracy significantly better than 0.5µm. Using
a Monte-Carlo simulation code (program code SRIM) we calculated for 2.25 MeV protons
through 100 nm Si3N4 and 100µm air a lateral straggling of theoretically less than 0.2µm.
Our high hit accuracy would enable us to write the small word “ION” into a cell nucleus
(Fig. 9, right) if the target recognition would be of similar precision. However, in some
cases large angle scattering occurred. Additional tests with four spots, each having about
1000 protons, showed in total eight hits between 2.5µm and 5µm away from the targeted
position which is 0.2 % of the total number of ions only.

10 µm

Fig. 9: Left : Hit verification tests on CR-39 (ca. 3000 protons per second, 1 ms beam gate
per position): The pattern was drawn with dots separated by 2µm. The target position
markers (white crosses) have a size of 1µm. The REM images reveal a hit accuracy sig-
nificantly better than 0.5µm; Right : The REM image of J. Lenzner of the word “ION”
from a 1µm spaced “LIPSION” on CR-39 was overlaid to the microscopic image of an
epithelial cell right on top of the nucleus of the cell (dashed oval).

First irradiation experiment of living cells were carried out with 2.25 MeV protons
homogeneously distributed in different patterns and number of protons over the cells [4].
Thus, we applied a dose up to 2 Gy to the cells. We checked for survival at different
times after irradiation. Surprisingly, the cell survival was not affected significantly; the
doubling time seemed to be slightly lower. The pattern of the irradiation could not be
recognized in the cell cultures after irradiation.

[1] B.E. Fischer, M. Cholewa, H. Noguchi, Nucl. Instr. and Meth. B 181 (2001) 60.
[2] M. Folkard, K.M. Prise, B. Vojnovic, S. Gilchrist, G. Schettino, O.V. Belyakov, A.
Ozols, B.D. Michael, Nucl. Instr. and Meth. B 181 (2001) 426.
[3] J. Österreicher, K.M. Prise, B.D. Michael, J. Vogt, T. Butz, J. Tanner, Strahlenther.
Onkol. No. 2 (2003) 69.
[4] A. Fiedler, J. Škopek, T. Reinert, J. Tanner, J. Vogt, J. Österreicher, L. Navratil, T.
Butz, Radiat. Res. 161 (1) (2004) 95.
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4.1.9 Perineuronal nets potentially protect against metal ion-
induced oxidative stress: A nuclear microscopy study in
human and rat brain

M. Morawski∗), T. Reinert, G. Brückner, W. Meyer-Klaucke∗∗), F. E. Wagner∗∗∗), T. Butz,
Th. Arendt∗), W. Tröger
∗) Paul-Flechsig-Institut für Hirnforschung, Universität Leipzig
∗∗) EBML Outstation Hamburg, Universität Leipzig
∗∗∗) Physik Department E15, TU München

A specialized form of extracellular matrix termed perineuronal nets (PN) consisting
of large aggregating chondroitin-sulfate proteoglycans, with hyaluronan and aggrecan as
main components, surrounds subpopulations of neurons. Due to their glycosaminoglycan
components, these PN form highly charged structures in the direct microenvironment of
neurons and thus might be involved in local ion homeostasis. Through their polyanionic
character, PN might also potentially be able to scavenge and bind redox-active iron and
reduce the local oxidative potential in the neuronal microenvironment, thus providing
some neuroprotection to net-associated neurons. The quantity and distribution of iron-
charged PNs of the extracellular matrix in the human and rat cortex, the subiculum
of the hippocampal formation, and the red nucleus was measured using the powerful
combination of Particle-Induced X-ray Emission (PIXE), Extended X-ray Absorption
Fine Structure (EXAFS), and Mössbauer spectroscopy. PIXE was used to localize and
quantify the bound iron. The binding affinity-constant (KD) was calculated using the
Michaelis-Menten equation. EXAFS and Mössbauer spectroscopy were performed to give
information on the chemical state and form of the PN bound iron as well as on the
chemical surrounding of the iron. These studies reveal that the iron is bound to the PNs
as Fe(III) in oxygen containing iron clusters. The EXAFS as well as the Mössbauer data
show no significant differences between the different net containing brain areas.

The results show that the PN ensheathed neurons accumulate up to 4,6 fold more iron
than any other extra cellular matrix structures depending on the applied Fe concentration
in the investigated brain areas with local amount maxima of 480mmol/l Fe at PNs. The
affinity-constants KD range depending on the analysed brain area from 2,2 mmol/l to 6,3
mmol/l.

These data suggest that PNs potentially protect the ensheated neurons by bind-
ing pathologically increased free iron thereby possibly preventing the formation of iron-
induced formation of free radicals. Vulnerability studies on neurons influenced by free
radical formation are under way.

4.1.10 Quantitative subcellular elemental analysis of parkinso-
nian and healthy human brain tissue

Ch. Meinecke, M. Morawski∗), T. Reinert, Th. Arendt∗), T. Butz
∗) Paul-Flechsig-Institut für Hirnforschung, Universität Leipzig

In cooperation with the Paul-Flechsig-Institute for brain research we investigated the
correlation between the distribution and concentration of trace elements (especially iron)
in the brain and neurodegenerative diseases (Parkinson’s and Alzheimer’s disease).
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Potentially discussed as a trigger of neurodegenerative diseases is the oxidative stress
induced by metal ions (e.g. Fe, Al, Cu and Zn). Therefore, we analysed the elemen-
tal concentrations (especially the iron concentration) in sections of the human substantia
nigra using µPIXE (PIXE - particle induced X-ray emission). The advantage of PIXE
is the quantification of the elemental concentrations with a high spatial resolution. For
these investigations we used a scanning proton beam focussed down to below 1 µm. Thus
it was possible to determine the iron concentration qualitatively. Histochemical analysis
did not provide such a quantification of the elemental concentration.
For the first time we have investigated the intra- and extraneuronal elemental concen-
trations (P, S, Ca, Fe, Cu, Ni, Zn) of the human substantia nigra pars compacta versus
pars reticulata with detection limits in the range of 50 µmol/l (equivalent to 3, 7 µg/g).
Thus, we could compare the iron concentration in human brain sections of healthy and
parkinsonian brain tissue. Clear differences in the iron concentration and distribution
could be disclosed (see Fig. 10).

Fe P S

Fig. 10: Three element image showing the lateral distribution of phosphorus (green), iron
(red), and sulphur (blue). The size of the scan area was 108 µm × 108 µm. Displayed is
a melanin rich neuron. The melanin is characterized by an higher concentration of iron
and sulphur (red an blue overlaid yields violet).

4.1.11 Metal Stoichiometries in Metalloproteins

H. N. da Luz, A. Vogel∗), O. Schilling∗), W. Meyer-Klaucke∗), D. Spemann, W. Tröger
∗) EBML Outstation Hamburg, Universität Leipzig

The use of proton induced X-ray emission (PIXE) allows to use the known sulphur
content of a protein sample as an internal standard to determine the metal to protein
ratio. The protein sulphur content is derived from the known protein amino acid sequence
(cysteine and methionine residues). The PIXE measurements were performed at the
LIPSION microprobe facility with a 2.25 MeV scanning proton beam. The scanning mode
with a focused proton beam of low current has the following advantages compared with
the use of a broad beam PIXE analysis (i.e., beam diameter of approximately 1 mm):

1. the spatial resolution reveals any sample inhomogeneities and allows to identify
external contaminations of the sample or the supporting foil

2. the low currents in combination with the scanning reduce drastically the heating
and the evaporation of volatile elements of the sample.
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In order to check the latter, each scan was individually analysed and no significant loss
of sulphur or metal ions was observed. Sorting and spatial mapping of the PIXE events
also assured that the spatial distribution of the elements was uniform over the measured
area of the sample. The protein samples are deposited in 1µl drops on a 0.9µm thick
polyethylene terephthalate (PET) foil stretched on an aluminum sample holder. The
protein concentration was about 1µM. STIM (Scanning Transmission Ion Microscopy)
together with the TRIM code for Monte Carlo simulation are used to derive the thick-
ness of the protein samples which is important for calculating correctly the X-ray emission
yields and the self absorption of X-rays by the sample, especially the characteristic K lines
from sulphur. We explored the limits of the metal stoichiometry determination of this
techniques with test samples containing inorganic dissolved copper salts embedded in an
organic polymer matrix. These tests lead to a successful application of the PIXE method
together with EXAFS measurement for elucidating the protein to metal stoichiometry
and the geometric structure of the Zn site in the ZiPD protein, which is associated with
certain types of cancer (see Fig. 11).
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Fig. 11: The PIXE spectrum of a mutant of the ZiPD protein. The areas of the peaks
are used to determine the relative concentration of the elements in the sample.
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4.1.12 TDPAC-Laboratory

W. Tröger, S. Friedemann, F. Heinrich, T. Butz

Nuclear probes are used to study the interaction of metals with biological macro-
molecules like, e.g., DNA and proteins. Many life processes are based on such interactions.
The structure and dynamics of metal sites in biomolecules are important in determining
the functional efficiency of these macromolecules. In order to study those metal sites
close to physiological conditions a highly sensitive spectroscopic method is required, like
Time Differential Perturbed Angular Correlation (TDPAC). Here, a radioactive atom is
placed at the site of interest and by correlating the emitted γ-quanta in space and on
a nanosecond time scale local structural information is provided. These investigations
allow a deeper insight into the detoxification processes, switches, adaptivity and rigidity
of metal sites in electron transfer proteins, and also the development of new radiopharma-
ceuticals in cancer therapy. Two modern 6-detector-TDPAC spectrometer are installed
permanently at the Solid State Physics Lab of the ISOLDE on-line isotope separator at
CERN. This outstation of the Leipzig TDPAC Laboratory is dedicated for TDPAC ex-
periments with rather short-lived TDPAC isotopes, like 111mCd or 199mHg, 204mPb with
half-lifes less than 70 minutes.

Fig. 12: View of the TDPAC laboratory with three modern TDPAC-Cameras (”silver
cubes”).

4.1.13 204mPb: A new isomeric TDPAC probe

W. Tröger, S. Friedemann, F. Heinrich

Recently, the lead isotope 204mPb (t1/2 = 67 min) became available for TDPAC mea-
surements at the online separator ISOLDE at CERN, Geneva (TDPAC - Time Differ-
ential Perturbed Angular Correlation). This isotope is well suited for dynamic studies
due to the long life time of the intermediate state (τN= 382 ns), which allows an excel-
lent frequency resolution. In first experiments the NQIs of a large number of inorganic
204mPb(II)-compounds has been determined (e.g. see Fig. 12). These compounds serve as
model compounds for life sciences. Additional first experiments on biological molecules
have been performed, e.g. of the type-II metal binding site in Azurin (see Fig. 13) and of
a lead binding catalytic DNA which might serve as a metal sensor.
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Fig. 12: Left: The TDPAC spectrum of Pb3(PO4)2, a model compound for biological
molecules. A single NQI, i.e. only one binding site of the Pb, was observed. Middle:
Cosine Transform of the TDPAC spectrum. Right: Czjzek plot
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Fig. 13: Left: First TDPAC spectrum of Pb-Azurin (wt). A large line broadening can
be observed which is not yet completely understood. Middle: Cosine Transform of the
TDPAC spectrum. Right: Czjzek plot

Besides the 204mPb isotope production at ISOLDE much effort was spent to optimize
the production of this isotope at the ISL facility (ISL - Ionenstrahllabor) at the Hahn-
Meitner-Institute in Berlin. There, a lead target is irradiated with protons to produce
204Bi (t1/2 = 11,4 h) which is used for a 204Bi/204mPb generator. We developed a special
target holder for the Pb irradiation which reduces drastically the production of unwanted
radioisotopes in the lead target as well as in the target holder. Furthermore, the separation
of 204mPb from 204Bi in the ion exchanger column was significantly improved by the use
of a High Performance Liquid Chromatography unit.

4.1.14 Radioactive Metal Probes as Diagnostic Tools
in Biomolecules

F. Heinrich, W.Tröger, T. Butz

The small blue copper proteins like azurin (Az), stellacyanin (Sc) and plastocyanin
(Pc) act as electron transfer proteins. All contain one copper atom in the reactive centre,
called type-1 Cu for its spectroscopic properties. In order to carry out studies of electron
transfer in proteins, it is desirable to adsorb protein monolayers onto atomically flat sur-
faces which can be used as electrodes. 1T-TaS2 and MoS2 single crystals with atomically
flat surfaces, grown by iodine vapour transport, are easily prepared with dimensions of
several mm in diameter and 10 - 30 µm in thickness. Atomic Force Microscopy (AFM)
studies revealed that a monolayer of Sc could be absorbed onto the flat surface of a MoS2.
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Further studies by time differential perturbed angular correlation (TDPAC) spectroscopy
will be performed to check whether this absorption occurred without a denaturation of
the protein or a distortion of the metal centre. In case the MoS2 surface is a biocompatible
electrode, the TDPAC studies on the electron transfer process will be started.

4.1.15 Ab initio Calculations of the Electric Field Gradient in
Molecules

F. Heinrich, W. Tröger

Electric field gradients (EFG) at the nucleus of a nuclear probe can be measured via
the nuclear quadrupole interaction by various methods, e.g. NMR or time differential
perturbed angular correlation spectroscopy (TDPAC). Usually, the interpretation of the
experimental data is done by comparison of the experimental EFG with well-known EFGs
of model compounds. Ab initio calculations of the EFG represent an alternative to vali-
date proposed chemical geometries of metal binding sites.

Fig. 14: Cd-16S4-(ClO4)2 - crown ether structure and iso-surface of the electron den-
sity. The Coulomb-potential is shown as a color field.

Our investigations are focused on the calculation of EFGs of molecules of different
families as mercaptides, thio-crown ethers (see Fig. 14) and metal centers of blue cop-
per proteins. We successfully reproduced EFGs in small and medium-sized molecules as
mercaptides and thio-crown ethers. These calculations are the basis to calculate EFGs in
macromolecules and to solve remaining problems of ligand coordination in metal centers
of proteins.

4.1.16 TDPAC-Solid State Physics: High Tc Superconductors,
Colossal Magnetoresistive Oxides, Semiconductors

J.G. Correia∗), J.P. Araujo∗), V.S. Ameral∗), F. Heinrich, T. Butz, W. Tröger
∗) Institute of Nuclear Technology, Sacavém, Portugal

In the framework of international cooperations we perform local studies on relevant
structural problems of High Tc Superconductors (HTSC) and Colossal Magnetoresistive
Oxides (CMO) by doping these with suitable radioactive isotopes for Perturbed Angu-
lar Correlations (TDPAC) and Emission Channeling (EC). In the case of the CMO the
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measurement of the nuclear quadrupole interaction (NQI) in insulators and conducting
samples provides information on the coupling between the local structure and chemical
doping (by oxygen and metal vacancies), magnetic and electric properties. The hyper-
fine magnetic field is also useful to probe magnetic ordering of Mn ions in the CMO
family of manganites. The main issue addressed was the characterization of local defor-
mations in manganites, due to polaronic mechanisms, using appropriate radioactive ions,
to study the effects of charge ordering and phase separation on a local scale. In the case
of HTSC the characterization of the order/disorder of Hg in planes of the HTSC family
Hg1Ba2Rn−1CunO2n+2+δ due to to the oxygen defect plays an major role. We implemented
ab initio calculations of the electronic densities and the electric field gradients (EFG) in
these compounds to interprete the TDPAC data. This illustrates Fig. 15 showing that
the doping with oxygen leads to two inequivalent Hg sites. The proposed position of Oδ

is based on the corresponding EFG calculations.
Furthermore, we studied the lattice location of rare earth and transition metals in

III-nitride conductors, the II-VI semiconductor ZnO by the EC technique and performed
TDPAC studies in order to elucidate the structure of defects in these materials.
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Fig. 15: Left: The TDPAC signal of Hg1Ba2Rn−1CunO2n+2+δ at different oxygen stoi-
chiometries. Right: Fourier transforms of the TDPAC signal and proposed configurations.

4.1.17 An Update on the Mercury(II) Binding to Metalloth-
ioneins

W. Tröger, F. Heinrich, À. Leiva-Presa∗), M. Capdevila∗), P. Gonzàlez-Duarte∗)
∗) Universitat Autonoma de Barcelona, Spain
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Metallothioneins (MT) are ubiquitous, cysteine-rich proteins of low molecular weight
which bind d10 metal ions such as Zn(II), Cd(II), Cu(I) and Hg(II) in metal-thiolate
clusters. They play an important role in the metabolism and in the modulation of the
essential trace element zinc and copper and in the binding of toxic heavy metals. The
latter suggests also the involvement in cellular detoxification mechanisms. Several 3D
structures have been solved for mammalian Me(II)7-MT, containing Zn(II) and/or Cd(II)
ions. These metal ions are tetrahedrally coordinated by both bridging and terminal
thiolates in cluster structures. We studied the Hg(II) binding in these molecules by
optical absorption spectroscopy and by time differential perturbed angular correlation
(TDPAC) spectroscopy. The former gives information on the stoichiometry and degree
of folding of the Hg(II)-MT species present in solution, and the latter has recently been
used successfully to elucidate the primary coordination sphere of Hg(II) ions in soluble
Hg(SCys)n species at physiological concentrations. The overall results provide information
on the variables affecting the Hg/protein stoichiometries and structures of the species
formed as well as on the evolution of the coordination geometry about Hg(II) at increasing
Hg/MT molar ratios. The titration of MT with different amounts of Hg revealed that
MT can bind up to 18 Hg(II) ions per MT molecule. Furthermore, there is a significant
shift from lower to higher frequencies for higher Hg(II) contents. From TDPAC studies
with model compounds we can assign certain frequency intervals to coordination numbers.
Whereas 4-fold Hg(II) co-ordinations dominate in Hg7-MT, Hg18-MT forms mainly 3-and
2-fold Hg(II) co-ordinations (see figure 16).
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Figure 16: TDPAC spectra (left) and the cosine transforms of the TDPAC-spectra of Hg7-
MT (top) and Hg18-MT (bottom). The shift from lower to higher frequencies indicates the
change of 4-fold Hg(II) co-ordinations to co-ordinations with lower coordination numbers.
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Duarte
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T. Reinert, A. Fiedler, J. Škopek, J. Tanner, J. Vogt, T. Butz
Nucl. Instr. Meth. B

Investigations of percutaneous uptake of ultrafine TiO2 particles at the high energy ion
nanoprobe LIPSION
F. Menzel, T. Reinert, J. Vogt, T. Butz
Nucl. Instr. Meth. B

Lattice parameter and elastic constants of cubic Zn1−xMnxSe epilayers grown by molecular-
beam epitaxy.
M. Hetterich, B. Daniel, C. Klingshirn, P. Pfundstein, D. Litvinov, D. Gerthsen, K. Eich-
horn, D. Spemann.
phys. stat. sol. (c)

Pulsed laser deposition of Fe-, Cu-, and Fe, Cu-doped ZnO thin films.
E. Guzmán, H. Hochmuth, M. Lorenz, H. von Wenckstern, A. Rahm, E.M. Kaidashev,
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4.1. NUCLEAR SOLID STATE PHYSICS 127

Arbeitstreffen FSI 2003, Berlin, 30.09.–01.10.2003.

Proton induced magnetism in graphite. (T)
D. Spemann, T. Butz, K.-H. Han, P. Esquinazi, R. Höhne.
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4.2 Physics of Dielectric Solids

4.2.1 New NMR Equipment

G. Klotzsche, D. Michel

(a) (b)

Fig. 1: 17.64 T magnet of the AVANCE 750 at the lower level of the lab (a) and at
the upper level (b).

For our NMR based research several spectrometers with superconducting wide bore
(89 mm) magnets are available covering a magnetic field range from 2.35 T to 17.62 T
(corresponding to proton resonance frequencies between 100 and 750 MHz). The installa-
tion of the new high-field solid-state NMR spectrometer ”AVANCE 750” in a wide-bore
magnet provides, in combination with a 400 MHz AVANCE NMR-spectrometer excellent
possibilities for fundamental and applied research. Various groups in Leipzig, Berlin, Jena,
Regensburg and others colleagues are involved in the measuring regime. Both spectrome-
ters of the AVANCE-series of Bruker Biospin (Karlsruhe) are equipped with a comparable
modern electronics enabling applications of advanced pulse techniques, like shaped pulses
and back-to-back pulses important for solid-state NMR applications. All NMR spectrom-
eters are suitable for experiments on solid-state matter as well as for investigations at
systems with restricted mobility (e.g. interface systems, biological membranes). We now
have possibilities to measure with very strong (more than 1000 W) radio-frequency fields
at any desired form in 2 or more channels simultaneously. Magic Angle Spinning (MAS)
up to 32 kHz is possible to simplify powder patterns, but we can also orient and rotate step-
wise single crystals using goniometer probeheads. Typical solid state NMR-measurements
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using broad band excitation may be performed in a wide temperature region from 4.2 K
to about 800 K.

For more details please contact Dipl.-Phys. Gert Klotzsche and Dr. André Pampel.
klotzsch@physik.uni-leipzig.de, anpa@physik.uni-leipzig.de

4.2.2 Size Effects of Doped Perovskite Nanoparticles Observed
by Means of Electron Paramagnetic Resonance (EPR)

E. Erdem, R. Böttcher, H.-C. Semmelhack, H.-J. Gläsel∗, E. Hartmann∗
∗ Leibniz-Institut für Oberflächenmodifizierung, 04318 Leipzig, Germany

The continuous studies of size effects on ferroelectric properties of oxide perovskites since
the fifties have obtained great impetus in recent years. Curie temperature, electrical
polarization, coercive field, switching time etc. potentially depend on particle size or,
more generally, correlation size. Whereas X-ray diffraction (XRD) technique bases on
coherent scattering at extended crystallographic planes and is, therefore, insensitive to
subtle structural short-range changes in perovskite nanocrystallites, the EPR method
sensitively probes small changes of the local symmetry at the particular crystal sites.
Therefore, the main field of our research is the application of multi-frequency EPR to
the perovskitic nanocrystallites doped by 3d ions. Ultrafine powders are prepared from
a monomeric metal-organic precursor through combined-solid state polymerization and
pyrolysis (CPP) [1]. This particular route enables not only the adjustment of the mean
particle size but also the incorporation of paramagnetic metal ions. Before the EPR mea-
surements, CPP-prepared oxide perovskite nanopowders were carefully characterized by
various methods (TGA, DSC, FT-Raman, XRD, SEM and EDX).

Fig. 1: Powder EPR spectrum of nanocrystalline PbTiO3. The spectrum can be
explained by the log-normal distribution of the particle sizes. Particle with sizes less than
the critical size dc generate the cubic spectrum C4.
Recently, we extended our investigations on Cr3+ doped PbTiO3 nanopowder samples

with varying mean particle size. EPR spectra were taken at room temperature using
the Bruker spectrometers ESP 380, EMX and ELEXSYS E 600 in the X (9.5 GHz),
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Q (34.2 GHz) and W (94.1 GHz) band measurements, respectively [2]. With the aid
of a well approved simulation program the parameters of the axial spin-Hamiltonian:
Ĥ = βŜgB +D[Ŝ2

z − S(S + 1)/3] of the Cr3+ centres (S = 3/2) from the powder spectra
were deduced. Note that the D parameter is distributed due to the changes of the lattice
parameters in the nanocrystalline PbTiO3 samples. The mean fine structure parameters
D and the widths ∆D of the distribution reveal a pronounced size dependence. The
superposition model by Newman was applied to translate the fine structure data into
local displacements inside the distorted oxygen octahedra of the PbTiO3 lattice [2]. When
going to nanopowder samples with mean particle size below a critical value, other than the
center C1 are no longer detectable (Fig. 1). Instead, a new one (C4) appears, testifying
a pronounced size effect.

[1] E. Erdem, R. Böttcher, H.-C. Semmelhack, H.-J. Gläsel, E. Hartmann and D. Hirsch
J. Mater. Sci. 38 (2003) 3211-3217.
[2] E. Erdem, R. Böttcher, H.-C. Semmelhack, H.-J. Gläsel and E. Hartmann phys. stat.
sol. b 239 (2003) R7-9.

4.2.3 Size Effects of Perovskite Nanoparticles Observed by Means
of Nuclear Magnetic Resonance (NMR)

G. Klotzsche, D. Michel

In addition to the EPR measurements of doped perovskite nanoparticles by Böttcher et
al., the properties of BaTiO3 powders were investigated by means of NMR spectroscopy.
The advantage is that these studies may be performed on natural local probes, e.g. 137Ba
nuclear spins. The NMR method sensitively allows to study small changes of the local
symmetry at the Ba site and to elucidate collective properties such as structural phase
transitions. The NMR spec-trum of 137Ba nuclei is predominantly influenced by nuclear
quadrupolar interaction. The tensor of the quadrupolar interaction derived is proportional
to the tensor of the electric field gradient which is very sensitive to local structure and
dynamics. NMR powder spectra of the central line transitions (m = +1/2 ⇔ m = −1/2)
were measured and simulated using second order perturbation theory of the quadrupolar
interaction to estimate the quadrupolar coupling constant e2qQ/h. Typical spectra for
the various phases are shown in the Fig. 1.

In nanoparticles (i.e. samples with an average grain size in the range between 25 nm ≤
dm ≤ 250 nm), a distribution of the quadrupolar constant e2qQ/h was found owing to dis-
tributions of the electric field gradient within the grain and additionally of the grain size
in the sample. The studies are especially sensitive when they are performed in the tetrag-
onal phase. The simulation of the NMR spectra is consistent with a structural model for a
grain in which a only weakly distorted tetragonal core is surrounded by a highly distorted
shell where the local symmetry is no more tetragonal. In agreement with the model,
the spectra were simulated assuming two values of the quadrupolar constant e2qQ/h and
respective values ∆(e2qQ/h) for the width of distribution. The thickness of the shell does
not depend on the grain size. Hence, in small grains the spectra are dominated by the
influence of the highly distorted shells and in very small grains a tetragonal center cannot
be found.
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Fig. 1: 137Ba NMR spectra of microcrystalline BaTiO3 powder, prepared from single
crystals, at various temperatures. Resonance frequency: 55.6 MHz (d.c. magnetic field
of 11.7 T). Temperatures: (R) rhombohedral phase at 160 K, (O) orthorhombic phase at
260 K, (T) tetragonal phase at 293 K and (K) cubic phase at 416 K.
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Fig. 2: NMR powder pattern of nanosized BaTiO3, mean grain diameter 75 nm, B0 =
11.744 T, T = 300 K. Line 1 corresponds to 137Ba nuclei in a highly distorted surrounding
(”shell”, ∆(e2qQ/h) = 1 MHz). Line 2 corresponds to 137Ba nuclei in a weakly distorted
surrounding (”tetragonal core”, ∆(e2qQ/h) = 0.5 MHz)
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4.2.4 Copper-Doped Hexagonal Barium Titanate Ceramics

H. T. Langhammer∗, T. Müller∗, R. Böttcher, V. Mueller∗, H.-P. Abicht∗
∗Fachbereich Physik, Martin-Luther-Universität, Halle-Wittenberg

The crystallographic phase, microstructure and dielectric properties of BaTiO3 + 0.02
BaO + x CuO ceramics are studied at various Cu-doping level (0 ≤ x ≤ 0.02). It is con-
firmed by electron paramagnetic resonance that Cu2+

Ti occupies Ti lattice-sites. Tetragonal
and hexagonal phase coexist at room temperature for x ≥ 0.003 (air-sintered, 1400◦C).
The portion of tetragonal phase decreases with x, leading to a decrease and broadening
of the dielectric anomaly at the Curie temperature. Although, as compared to other 3d
transition dopants (e.g., Mn), the hexagonal phase is stabilized at room temperature at
smaller Cu-concentration, the tetragonal phase does not vanish completely even at higher
doping level. Grains with exaggerated, plate-like shape (mean grain size > 100µm) are
attributed to the hexagonal phase. We suggest that Jahn-Teller distortion due to the
d9 electron configuration of Cu2+

Ti represents the driving force for the cubic-hexagonal
transition.

4.2.5 Synthesis and Characterisation of One Dimensional
Ferroelectrics with Perovskite Structure

R. Böttcher, E. Hartmann∗
∗Leibniz-Institut of Oberflächenmodifizierung Leipzig

Advances toward nanoscale electroncis have created interest in the effects of particle size
on the properties of oxidic perovskite substance (ABO3). These materials are employed
for their dielectric, piezoelectric, eletrostrictive, pyroelectric, and electro-optic properties.
Understanding how the crystal structure and the state of polarization are influenced by
particle size is important to the performance of these ferroelectric materials in many
applications. Our work aims to understand how nanoscaling influences the ferroelectric
properties and to determine the critical size where a ferroelectric nanostructure no longer
behaves like the bulk material. This project in the frame of the Forschergruppe 522 fo-
cuses on the synthesis and characterisation of perovskite nanotubes made by template
method. Masked Whatman anodics membranes (200 nm pores) served as templates and
are dipped into a solution of monomeric metallo-organic precusor from barium (lead)
oxide, titanicum (IV) isopropoxide and methacrylic acid. After calciming the templates
are removed and the powder sample of the nanotubes are characterized. Crystallographic
characterization is performed with X-ray diffraction (XRD), electron microscopy and FT-
Raman spectroscopy. EPR investigations of paramagnetic 3d-ions incorporated into the
perovskite lattice at Ti-sites and dielectric measurements in a broad frequency band give
a deep insight in the change of the dielectric properties of nanotubes in dependence of the
aspect ratio.
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4.2.6 Q-Band Pulsed ENDOR Spectrometer for the Study of
Transition Metal Ion Complexes in Solids

J. Hoentsch, Yu. Rosentzweig∗, K. Köhler∗∗, M. Gutjahr, A. Pöppl, G. Völkel, R. Böttcher
∗Laboratory of Magnetic Resonance, Kazan State University, Russian Federation
∗∗Anorganisch-chemisches Institut, Technische Universität München, Germany

Pulsed ENDOR spectroscopy at Q-band (34 GHz) offers a good compromise between
the experimental setups at conventional X-band or W-band frequencies. The orientation-
selection in ENDOR spectra of disordered systems is already superior to X-band exper-
iments without serious interference by g strain effects. Furthermore, Q-band mw com-
ponents are still compa-rable in costs and performance with X-band components and
conventional magnets can be used. Surprisingly, only a few pulsed EPR spectrometers
operating in the intermediate mw frequency range between X- and W-band have been
described so far. In our group a pulsed ENDOR spectrometer operating at Q band fre-
quencies (35 GHz) for studies of transition metal ion complexes in the temperature range
between 4.2 K and 297 K was designed. Specific features of the spectrometer are a mi-
crowave IMPATT generator, a home-built cavity, and a commercial BRUKER magnet
system which allow the construction of a pulse spec-trometer at relatively low costs. The
most mw components implemented were designed in Magnetic Radiospectroscopy and
Quantum Electronics Laboratory of Kazan State University. In our experimental setup
a gunn diode serves as the main mw source. Its microwave output power of 70 mW is
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divided into two parts for the pulse forming and the reference arm by a direction coupler
(DR, 7 dB). The pulse mw IMPATT generator delivers a train of three pulses with lengths
of 50–200 ns with a maximum output power of about 6 W at a repetition rate of 5 kHz.
It is controlled by the three digital delay generators and generates the mw pulses for
the Davies or Mims ENDOR experiments as well as for the electron spin relaxation time
measurement. The echo signals and the mw power reflected at the resonator input are
directed via the circulator (CIRC) to the preamplifier (LNA, F = 4 dB, gain = 29 dB),
protected by the switch SPST1 and the limiter LIM. The detection is based on a balanced
mixer. The echo and the reference signal are mixed to yield the video signal which is am-
plified by the video amplifier (VA, gain = 18 dB) and directed into a boxcar integrator.
A home-made TE011 cavity with a quality factor Q0 ≈ 1000, tunable from 34.6 GHz to
35.4 GHz is used as ENDOR probe head (see figure).

With the slightly over-coupled cavity the two pulse echo of our test sample (diamond
doped with nitrogen) is developed to the maximum for mw π/2 and π pulses with lengths
of 60 ns and 120 ns at an incident mw power of 6 W. For ENDOR experiments the radio
frequency (RF) field is injected with a pair of hairpin loops of two turns each inside
the cavity. Standard Davies and Mims ENDOR sequences have been implemented. The
performance of the spectrometer is demonstrated for a broad radio frequency range by 1H,
14N, 31P, 133Cs, and 207Pb pulsed ENDOR experiments of Cu2+, Cr5+, and V4+ transition
metal ion complexes in both single crystals and disordered materials.

4.2.7 Characterization of Heterogeneous Catalysts by
EPR Spectroscopy

A. Pöppl, V. Umamaheswari, M. Gutjahr, N. Vijayasarathi

A major research topic of our group is the study of active surface sites in heterogeneous
catalysts by electron paramagnetic resonance (EPR) spectroscopy. To apply ESR meth-
ods to such systems the catalytically active sites have to be either paramagnetic species
by themselves (e.g. paramagnetic transition metal ions) or paraprobe molecules have to
be adsorbed on the studied diamagnetic surface sites (eg. acid centers and transition
metal ion species).

The first approach has been used to characterize the immobilization of catalytically
active V(IV) complexes on various solid surface supports (SiO2, Al2O3, AlF3). The graft-
ing of tetrakis(dimethylamido)-vanadium(IV) precursor complexes and the subsequent
exchange of the dimethylamido ligands by phosphorous and vanadium(V) containing lig-
ands was studied in detail by a combined application of several EPR techniques at low
temperatures. Besides continuous wave multifrequency EPR spectroscopy at X, Q, and,
W band pulsed electron nuclear double resonance (ENDOR) as well as hyperfine sublevel
correlation (HYSCORE) spectroscopy have been used to measure the weak superhyperfine
(shf) interactions between the unpaired electron spin at the metal ion and the nuclear
spins in the ligand molecules (1H, 14N, 31P, 51V) or in the surface support (27Al, 19F).
These shf interactions are the key information in the structural analysis of such immo-
bilized paramagnetic transition metal ion complexes. Alternatively, nitric oxide (NO)
and di-tert-butyl nitroxide (DTBN) probe molecules were employed to characterize Lewis
acid sites and Cu(I) cations in various zeolite materials. The geometrical and electronic
structures of the resulting adsorption complexes with alkali and transition metal cations
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could be again determined by a combined application of advanced EPR methods.
An attractive example for the application of modern EPR methods for the study of

surface sites in microporous materials is the invetigation of the adsorption of DTBN in Cs
exchanged Y zeolites. 133Cs HYSCORE spectroscopy has been employed to characterize
the structure of adsorption complexes of DTBN with cesium cations in zeolite CsNaY.
The experimental 133Cs HYSCORE data proved the direct coordination of the adsorbed
DTBN molecules to the Cs+ ions and revealed unambiguously the existence of two different
types of adsorption complexes. Evaluation of the orientation selective 133Cs HYSCORE
spectra provided the 133Cs hyperfine coupling tensors and thus information about the
geometrical structure of those complexes (Fig. 1). For one type of adsorption complexes
a complex geometry was obtained where the Cs+ ion is located within the molecular
mirror plane of the DTBN radical with an oxygen - cesium cation bond length of 0.25 nm
(complex structure A). For this complex the isotropic Cs hyper-fine coupling was found
to be negative. The second Cs+-DTBN complex is characterized by a bent structure
(complex structure B). With an isotropic 133Cs hyperfine coupling of 9 MHz the unpaired
electron spin density in this Cs+-DTBN complex localized at the Cs ion was determined
as 0.36%.
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Fig. 1: Structural models of the DTBN-Cs+ adsorption complexes zeolite CsNaY (with
the frame-work oxygen of the zeolite indicated by Of): (a) complex geometry A with a
bond length RO−Cs = 0.25 nm and βbond = 180◦ ± 25◦; (b) complex structure B with
RO−Cs = 0.21 nm and βbond = 137◦ ± 25◦.

[1] K. M. Neyman, D. I.. Ganyushin, V. A. Nasluzov, N. Rösch, A. Pöppl, M. Hartmann:
Electronic g values of Na+-NO and Cu+-NO complexes in zeolites: Analysis using
relativistic density functional methods, Phys. Chem. Chem. Phys. 5 (2003) 2429-2434.
[2] M. Gutjahr, R. Böttcher, A. Pöppl: 133Cesium HYSCORE Investigation of the
Di-tert-butyl Nitroxide — Cs+ Adsorption Complex in CsNaY Zeolite, J. Phys. Chem.
B 107 (2003) 13117-13122.
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4.2.8 MAS-NMR Studies on Model Membranes: Lipid Bilayers
Containing Membrane Peptides

A. Pampel, D. Michel

Part of the research program of our group is also the investigation of so called ”soft-matter”
or ”semi-solid matter”, especially of systems in liquid-crystalline phases as drug delivery
systems and models for biological membranes. We are applying a multidisciplinary ap-
proach using mainly Solid State NMR spectroscopy to reveal structural and dynamical
aspects of such systems. NMR spectroscopy has definite advantages over diffraction tech-
niques in the structure elucidation of liquid-crystalline structures, which exhibit very low
short-range order. These advantages, however, are frequently offset by resonance broad-
ening mechanisms, which are caused by the anisotropic NMR parameters. Therefore, for
this research we are using methods, which have been developed for the High-resolution
NMR spectroscopy of solids. Main parts of our activities include the application, the
development and the optimization of methods of High-resolution MAS techniques for the
investigation of lipid bilayers containing membrane peptides. Current research projects
include investigations of models of biological membranes with the main focus is on the
determination of structure and dynamical behavior of molecules within membranes, e.g.
peptides and proteins. In cooperation with the Institute of Biochemistry (Prof. A.G.
Beck-Sickinger) we are investigating structural aspects of the membrane binding of the
neuropeptide Y. As a novel technique for investigation of such system we have introduced
the combination of Pulsed Field Gradient NMR and HR MAS NMR spectroscopy. The
PFG MAS technique allows the determination of diffusion coefficients, even in a com-
plicated environment like a membrane, which contains many components. Recently, we
were successful in determining the diffusion coefficient of all membrane components of
membranes containing lipids, water and a membrane peptide. [1]

8 7 6 5 4 3 2 1 ppm

78

Fig. 1: 1H MAS NMR spectrum of a lipid membrane composed of POPC, the peptide
WALP16, and water, which was observed using the 750 MHz spectrometer (see above).
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The inset shows the magnified region of the rather small signals of the aromatic rings of
WALP16, which becomes detectable by the use of the high magnetic field.

The high resolution obtained allows the observation of the diffusion of all membrane
components simultaneously.

Currently, we are focusing on further development of the PFG MAS method, especially
on improvements of the theoretical description of the experiments.

[1] Pampel, A., J. Kärger and D. Michel, Lateral diffusion of a transmembrane peptide
in lipid bilayers studied by pulsed field gradient NMR in combination with magic angle
sample spinning, Chem. Phys. Lett., 2003. 379(5-6): p. 555-561.

4.2.9 Matrix Materials for Studies of Molecules in
Confined Geometry

W. Böhlmann, D. Michel, S. Mulla-Osman

Zeolites and mesoporous molecular sieves have highly-ordered micro- and mesopores,
which are suitable for many applications such as molecular sieving, cation exchange,
catalyst, and quantum confinement of guest compounds. Furthermore, the study of mass
transport and diffusion is particularly important in the understanding of catalytic pro-
cesses.

Well-known MCM-41 and a further ordered mesoporous materials (OMM) of the
SBA-type were prepared, which were of great interest as matrix materials in the last
years. The OMM mentioned have uniform pore diameters and a hexagonal or cubic
ordered pores, which makes them ideally suited as templates for preparing various inor-
ganic nanowires/arrays and nanostructures. Besides the adsorption of different organic
molecules the introduction of inorganic functional nanoparticles gives novel inorganic host-
guest nanocomposites with specific optical, electronic and magnetic properties. Besides
these aspects, it is known that molecules in confined geometry have another phase transi-
tion behavior as in the bulk state. Recently it could demonstrate that the freezing point
temperature is reduced inversely proportional to the mean pore diameter when liquids
are confined within small pores.

We studied the dynamic behavior of long chain molecules like n-dodecane and n-
undecylamine in two different porous materials (MCM-41 and zeolite NaX) using several
NMR methods [1]. NMR measurements were performed over a wide temperature range
to characterize the behavior of molecules confined in the porous material. Moreover,
recent advances in experimental techniques led to an additional increase in the resolution
of 1H NMR spectra and, in particular, allowed the observation of high-resolution 1H
MAS NMR spectra of adsorbed molecules. 13C MAS and 13C CP/MAS NMR studies
are more sensitive to get information about the dynamics of the adsorbed molecules at
low temperatures and and to study structural details. Independent of the host system
used, both n-dodecane and n-undecylamine reveal a reduced melting-freezing transition
temperature which lies about 60 K below that for the bulk liquids.

[1] W. Böhlmann, S. Mulla-Osman, and D. Michel, 1H and 13C NMR Studies of Long
Chain Hydrocarbons Adsorbed on MCM-41 and Zeolite NaX, Stud. Surf. Sci. Cat.,
2004, in press
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4.2.10 NMR and Dielectric Investigations on Ethylene Glycol
Molecules Sorbed in Zeolites

Özlen F. Erdem, Dieter Michel

Glass forming molecule ethylene glycol (EG) molecules are adsorbed in various types
of zeolites (NaX, ZSM-5, sodalite) which possess different diameters of their internal
cages. The aim of this study is to characterize the physical and chemical properties of the
molecules in confined geometry and to study especially the reorientational and transla-
tional dynamics of the adsorbed molecules. In a first step of the studies, high-resolution
1H, 13C and CP MAS NMR spectroscopy was used to investigate the behavior of the
adsorbed molecules for different pore filling degrees (or loadings). An important ques-
tion is to determine the loading of the pores with high accuracy and to characterize the
molecules in the internal holes besides those adsorbed on the external surfaces. This was
possible by means of the 1H NMR shifts.

Temperature dependent 1H NMR measurements show clear differences between sam-
ples where the amount of adsorbed EG molecules in NaX zeolites corresponds to a com-
plete or smaller filling of the cages (so-called normal loading, pore filling factor Θ ≤ 1)
and ”over-loaded” ones with a filling factor of Θ > 1. Typical NMR spectra are shown in
Fig. 1.

A pore filling factor Θ = 1 corresponds to 10 EG molecules per large cavity (supercage)
of NaX zeolites. In the present stage of the work, the task is to understand the typical
changes in the NMR line shape on going from the range with Θ ≤ 1 to ”overloaded”
samples in terms of conformational changes of the adsorbed molecules under the influence
of confinement. Moreover, it can be shown that frequency dependent 1H NMR spin lattice
relaxation time measurements allow us to characterize the state of adsorbed molecules in
terms of molecular mobility and determine the correlation times of the thermal motion
and their activation energies. In a next step the latter measurements will be compared
with the results of dielectric measurements in order to understand whether an Arrhenius
type behavior or Vogel-Fulcher type relaxation rates occur.

Fig. 1: 1H MAS NMR spectra for ethylene glycol in NaX with different loading degrees,
at temperatures of 310, 330 and 350 K.
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4.2.11 Study of dynamics and structure of incommensurately
modulated crystals by means of nuclear magnetic reso-
nance spectroscopy

D. Michel, A. Taye
in close co-operation with Professor Jörn Petersson, University of Saarland, Saarbrücken

A large number of crystals, such as bis(4-chlorophenyl)sulphone ([(ClC6H4)2SO2], abbrevi-
ated as BCPS), exhibit a phase transition from a high temperature normal phase into a
one-dimensionally structurally incommensurately (IC) modulated phases, where a local
property is modulated with a period which is not an integral multiple of the paraelectric
unit cell edge. Consequently the translational periodicity is lost, and the crystallographic
sites are no longer equivalent. With reference to the intention of the present work this
fact has two important consequences. First, any static and local physical property shows
a typical distribution. This is sometimes expressed by stating that the whole crystal
may be looked upon as the elementary cell. Second, the initial phase of the modulation
wave is arbitrary and the IC structure is continuously degenerate with respect to a phase
shift. Thus, special low energy excitations termed phasons are present in IC systems.
Quadrupolar perturbed nuclear magnetic resonance (NMR) has been proved to be an
accurate and sensitive tool for investigating IC phases [1]. The static part of the electric
field gradient (EFG) is a local physical property whose components are distributed in a
characteristic manner because of the structurally incommensurate modulation. Accord-
ingly, a spectrum of NMR frequencies occurs which shows edge singularities as a typical
feature (Fig. 1).

Fig. 1: Comparison of the calculated and the experimental 35Cl NMR spectra in the
IC phase at the temperature T = 148.25 K. The simulations reflect quite well the features
of the experimental 35Cl NMR spectra.

Moreover, the NMR spin-lattice relaxation rates, 1/T1, allow special insights into the
phason and amplitudon dynamics in the IC phase of BCPS below Ti ≈ 150 K and about
the collective dynamics in the critical range above Ti. The simulation of the 35Cl NMR



4.2. PHYSICS OF DIELECTRIC SOLIDS 141

line shape in the IC-Phase of high quality BCPS single crystals performed and the inter-
pretation of the critical contribution to 1/T1 achieved are in complete agreement with the
general theoretical predictions for systems with IC phases:
a) The asymmetric frequency distribution with edge singularities very close to the N-IC
phase transition below Ti (Fig. 1) is a clear indication that large-scale fluctuations of the
modulation wave (”floating”) do not occur [2].
b) The critical behavior above Ti is in good agreement with the predictions of the 3d XY
model and with the results of the renormalization group theory [3].
c) The behavior of 1/T1 in the IC phase below Ti is consistent with the predictions of the
dominant role of phason and amplitudon fluctuations [3].
d) The broad temperature range for the critical dynamics above Ti which is in contradic-
tion to the Ginzburg-Landau criterion, can be completely understood on the basis of an
extended renormalization scheme [4].

[1] F. Decker, and J. Petersson, Phys. Rev. B 61, 8993 (2000)
[2] A. Taye and D Michel, physica status solidi. (b), (2004), in press
[3] A. Taye, D. Michel, and J. Petersson, Phys. Rev. B, (2004), in press; A. Taye, D.
Michel, J. Petersson, 35Cl nuclear magnetic resonance study of critical fluctuations in
bis(4-chlorophenyl)sulphone [(ClC6H4)2SO2], Phys. Rev. B 66 (2002) 174102-1-7
[4] J. M. Wesselinowa, D. Michel, H. Braeter, N. M. Plakida, J. Petersson, and G.
Völkel, Phys. Rev. B 68, 224109 (2003).

4.2.12 The Low-Temperature Phase of Chromium Doped Di-
methylammonium Gallium Sulfate Hexahydrate
(DMAGaS) Studied by Electron Paramagnetic Resonance

G. Völkel, R. Böttcher, D. Michel, Z. Czapla∗
∗University of Wroclaw, Institute of Experimental Physics

Dimethylammonium gallium sulfate hexahydrate (DMAGaS) and dimethylammonium
aluminum sulfate hexahydrate (DMAAS) are isomorphous and ferroelastic at room tem-
perature. Both they show an order-disorder type transition into a ferroelectric phase
but only DMAGaS exhibits a further first-order transition into a low temperature non-
ferroelectric phase. We investigated the electron paramagnetic resonance (EPR) of chromium
doped DMAGaS giving insight into the peculiar reorientation order of the polar dimethy-
lammonium ions on a microscopic level. We found that the low-temperature phase of
DMAGaS below 115 K shows a sequence of commensurate and incommensurate phases.
Below 60 K the crystal becomes antiferroelectric [1]. This unusual phase sequence can
be well explained by means of a Landau approach using a great number of sublattice
polarizations and more generally by the semimicroscopic extended DIFFOUR model [2].

[1] G. Völkel, R. Böttcher,D. Michel, Z. Czapla, Ferroelectrics 268, 181 (2002).
[2] G. H. F. van Raaij, K. J. H. van Bemmel, T. Janssen Phys. Rev. B 62, 3751 (2000).
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4.2.13 Order-disorder of TMA ions and phase transitions in
tetramethylammonium cadmium chlorid (TMCC) stud-
ied by NMR

D. Michel, S. Mulla-Osman, G. Völkel, Z. Czapla∗
∗University of Wroclaw, Institute of Experimental Physics, 50204 Wroclaw, Poland

TMCC belong to the isostructural family of tetramethylammonium (TMA) haloids,
(CH3)4NMX3, with the bivalent metals M = Mn, Ni, Cd, Cu, V and the halogen atoms
X = Cl, Br, I, have attracted much attention because of their one-dimensional type struc-
ture. They are built up from infinite chains of MX6 octahedra. The space between the
chains is occupied by the (CH3)4N

+ [TMA] cations. 14N and 1H NMR measurements
enable to study the ordering of TMA ions in relation to the phase transition from the
high-temperature hexagonal phase I (space group P63/m , Z = 2 formula units) to a
ferroelastic phase II (P21/m) of TMCC. The results are discussed on the base of theo-
retical predictions about the orientational order of the TMA groups in the well-known
contribution of Braud et al. [1].
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Fig. 1: 1H-NMR spin-lattice relaxation time for TMCC single crystals. The red points
(•) represent our measurements at the resonance frequency of ν = 100.13 MHz. Previous
maesurements (⊕) from Tsang et al. [6] were run at 14.7 MHz.

In our previous 35Cl NMR investigations [2, 3] which are also essential for the interpre-
tation of XRD measurements [4], we have found a twin domain structure in the ferroelastic
phase II. The measured saturated rotational angle between the epitaxially grown domains
of Θexp = 4◦ is in a very good agreement with the theoretical value of Θs = 3.5◦ calculated
from the ferroelastic strain tensor. The sequence of the structural phase transitions in
this crystal family was previously described in the framework of the Landau theory [1].
To proof these predictions, 14N NMR and 1H NMR spin-lattice relaxation time measure-
ments were run [5]. The temperature dependence of the 14N quadrupole coupling tensors
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in the various phases of TMCC crystals can be explained on the base of a pseudo spin
model. This treatment also explains the two-component order parameter h in the ferroe-
lastic phase II the amount of which can be directly derived from the NMR spectra. Thus,
the results presented provide a detailed proof of the theoretical predictions in [1]. With
respect to this pseudo-spin operator analysis two different sorts of CH3 groups are present
in phase II. Even this conclusion is nicely supported by further 1H NMR spin-lattice re-
laxation studies on TMCC at different fields B0 (see Fig. 1) which are based on a previous
paper by Tsang and Utton [6]. In the range 1000/T < 4 a contribution to the relaxation
time is expected owing to the isotropic reorientation of the TMA ions. In the simulation
shown here, the activation energies were taken from Ref. [7]. Besides the overall tumbling
of the whole TMA ion, the reorientation of the CH3 groups about their C-N axes gives a
significant contribution to T1. In the phase III of TMCC, below 104 K, the contribution of
two different types of methyl groups can be seen, which directly supports the prediction
of the pseudo-spin theory which was developed for the whole important crystal family
showing the quasi-one dimensional ordering behavior.

[1] M. N. Braud M N, M. Couzi and N. B. Chanh, J. Phys.: Condens. Matter 2, 8243
(1990).
[2] S. Mulla-Osman, D. Michel, G. Völkel and Z. Czapla, phys. status solidi 219, 9
(2000), ”Investigation of the ferroelastic domain structure of TMCC by means of nuclear
magnetic resonance spectroscopy”.
[3] S. Mulla-Osman, D. Michel, G. Völkel, I. Peral and G. Madariaga, 35Cl-NMR studies
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4.2.14 Advanced Signal Processing for Magnetic Resonance

D. Michel, A. Pampel

Quantitation of time domain data is a very useful tool for the estimation of spectral
parameters in magnetic resonance spectroscopy (MRS) and for applications in magnetic
resonance imaging (MRI).

This work was part of a European Project (with participants from the Belgium, France,
Germany, Greece, The Netherlands and Spain) in which a program system for Medical
Magnetic Resonance Imaging and Spectroscopy is developed with a special ”Magnetic
Resonance User Interface (MRUI)”. The co-ordinator of this EU project was Prof. Dirk
Van Ormondt, Technische Universiteit Delft (NL).

Software development is one of the goals of the EU Project, ”Advanced Signal Process-
ing for Medical Magnetic Resonance Imaging and Spectroscopy”, formerly in the Human
Capital and Mobility Networks programme (HCM , CHRX-CT94-0432, 1994-1997) and
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later in the programme Training and Mobility of Researchers (TMR, FMRX-CT97-0160,
1997-2001).

The Advanced Time Domain Signal Processing Package includes
-Black box quantitation based on Singular Value Decomposition (SVD)
-Non Linear Least Squares quantitation (NLLS)
-Preprocessing algorithms
-Error estimation: Cramér-Rao lower bounds

Details are available in:
http://azur.univ-lyon1.fr/TMR/tmr.html
(see also <Dr. Danielle Graveron>)
http://www.mrui.uab.es/mrui/mruiHomePage.html
(see also <Dr. Miguel Cabanas>)

The programme system is freely accessible and is already used world wide.

4.2.15 Melting-freezing phase transition of gallium embedded
in porous glasses

D. Michel
in close co-operation with
B. F. Borisov∗, E. V. Charnaya∗, D. Yaskov∗, C. Tien∗∗, C. S. Wur∗∗, and Yu. A. Kumzerov∗∗∗
∗Institute of Physics, St. Petersburg State University, St. Petersburg, 198904, Russia
∗∗Department of Physics, National Cheng Kung University, Tainan, 701 Taiwan
∗∗∗A.F.Ioffe Physico-Technical Institute RAS, St.Petersburg, 194021, Russia

The main topics of this work include
- the study of phase transitions in confined geometry, in particular melting and freezing
of metallic gallium nanoparticles within porous matrices;
- the influence of size effects on the mobility in confined liquids, e.g. the mobility of
melted metallic gallium in pores;
- the effect of confinement on electronic properties of metals which may be sensitively
studied by means of alterations of the Knight shift for gallium within pores.

Samples of porous glasses (with pore diameter of 3.5 to 200 nm) and synthetic opals
(regular spheres of silica) were used as matrices.

The melting-freezing phase transition of gallium confined within Vycor glass was stud-
ied by NMR and acoustic techniques. A pronounced depression of the freezing and melt-
ing phase transition temperatures and a hysteresis in the melting-freezing processes were
found and discussed. NMR studies on liquid confined gallium revealed a noticeable de-
crease in the Knight shift and a drastic acceleration in gallium spin-lattice relaxation.
These changes depend on the size and the geometry of the pores. The relaxation mea-
surements were used to estimate the thermal correlation times of the Ga atoms in the
confined geometry and to relate them with atomic diffusion.
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4.2.16 An exactly soluble model for distortive structural phase
transitions in a crystal with a single defect

H. Braeter, D. Michel

An exactly soluble three-dimensional spherical-like model [Physica A 321 (2003) 543-
564] is considered to describe the distortive structural phase transition of a crystal with
a single defect. The defect can be incorporated in the vibrations of all other particles
only if the attractive single site potential of the defect is less than a certain critical value.
No local distortions can appear above the phase transition temperature TC of the perfect
host crystal. Above the critical value of its attractive single-site potential, the defect does
not participate in the motions of the host. But a local mode may appear above TC, which
only condenses if the critical value is reached. The local mode can only soften at the
phase transition temperature of the perfect system. All critical exponents of the model
with a single defect are the same as the critical exponents of the perfect lattice.

4.2.17 Funding

Strukturaufklärung der Tieftemperaturphase des Dimethylammoniumgalliumsulfat
(DMA-GaS) und der Untersuchung des Ordnungs-Unordnungs-Verhalten der
Dimethylammoni-umgruppen mit Hilfe der EPR-Spektroskopie
Investigation of the low-temperature phase in demethylammoium gallium sulfate
(DMAGaS) and the order disorder behaviour of the dimethylammonium groups (DMA)
by means of EPR
R. Böttcher, D. Michel: DFG, Bo 1080/7

Strukturaufklärung nanokristalliner Ferroelektika mit Perowoskitstruktur durch
Hochfeld-EPR-Spektroskopie
Investigation of nanocrystalline ferroelectrics with pervoskite structure by means of
high-field-EPR spectroscopy
(im Rahmen des Schwerpunktprogrammes 1051)
R. Böttcher: DFG, Bo 1080/6-3

Synthese und Charakterisierung eindimensionaler Ferroelektrika mit Perowskitstruktur
Synthesis and characterisation of one dimensional ferroelectrics with perovskite structure
(im Rahmen der Forschergruppe 522)
R. Böttcher, E. Hartmann: DFG Bo 1080/8-1

Hochfeld-ESR Spektroskopie von monomerem und dimerem Stickstoffoxid-Komplexen in
Zeolithen
High field EPR spectroscopy of monomer and dimer nitric oxide complexes in zeolites
(im Rahmen des Schwerpunktprogrammes 1051)
A. Pöppl, M. Hartmann: DFG: PO 426/2-3

Synthese und Strukturaufklärung von Vanadium-Phosphat-Systemen mittels
ENDOR-und ESEEM-Spektroskopie
Synthesis and determination of the structure of vanadium-phosphate systems by means
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of ENDOR and ESEEM spectroscopy
A. Pöppl, K. Köhler: DFG, PO 426/3-1

Experimental proof of the predictions of renormalization theory on the critical
exponents in systems with incommensurately structurally modulated phases
D. Michel: DFG Mi 390/

Advanced Signal Processing for Medical Magnetic Resonance Imaging and Spectroscopy
D. Michel (mit A. Pampel)
(EU, programme TMR: Contract No. ERBFMRXCT970160)

High-Resolution NMR Spectrometer with a Proton Resonance Frequency of 750 MHz
D. Michel: DFG, Mi 390/5-3

Phase transitions in metals and ferroelectrics embedded into porous glasses and other
porous matrices.
D. Michel, E. V. Charnaya: DAAD, Leonhard-Euler programme

NMR studies of short-chain surfactants in a heavy water solutions
D. Michel, V. I. Chizhik: DAAD, Leonhard-Euler programme

4.2.18 External cooperations

Leibniz-Institut für Oberflächenmodifizierung - IOM Leipzig (Dr. E. Hartmann)

Universität Kaiserslautern, Fachbereich Chemie, Technische Chemie (Dr. M. Hartmann)

Technische Universität München, Anorganisch-chemisches Institut (Prof. K. Köhler)

The Weizmann Institute of Science, Department of Physical Chemistry, Rehovot, Israel
(Prof. D. Goldfarb)

Vilnius University, Radiophysics Department (Dr. J. Banys)

Wroclaw University, Institute of Experimental Physics (Prof. Z. Czapla)

University of Opole, Institute of Mathematics (Prof. V. A. Stephanovich)

Max-Delbrück-Center for Molecular Medicine (Dr. R. Reszka)

Universität des Saarlandes, Saarbrücken (Prof. J. Petersson et al.)

St. Petersburg State University (Prof. E. V. Charnaya, Prof. B. N. Novikov, Prof. V. I.
Chizhik)

Ioffe Institute St. Petersburg (Prof. J. A. Kumzerov)



4.2. PHYSICS OF DIELECTRIC SOLIDS 147

Kirensky Institute of Physics of the Sibirian Branch of the Russian Academy of
Sciences, Krasnoyarsk (Prof. I. P. Aleksandrova, Dr. J. Ivanov)

A. Mickiewicz University of Poznan (Prof. S. Jurga)

Universität Leipzig, Fakultät für Biowissenschaften, Pharmazie und Psychologie (Prof.
A. Beck-Sickinger)

Martin-Luther-Universität Halle-Wittenberg: Department of Physics (Dr. H. T.
Langhammer, Prof. Dr. H. Schneider, Prof. Dr. H. Beige)
School of Pharmacy, Institute for Pharmaceutics (Prof. R. H. H. Neubert, Prof. Dr. S.
Wartewig)

4.2.19 Publications

Journals

G. Völkel, R. Böttcher, D. Michel, Z. Czapla
Low-temperature phase of chromium-doped dimethylammonium gallium sulfate
hexahydrate studied by electron paramagnetic resonance
Phys. Rev. B 67 (2003) 024111-1 - 14

S. Mulla-Osman, D. Michel, Z. Czapla
14N NMR study of the domain structure of tetramethylammonium cadmium chloride
(TMCC)
phys. Stat. Sol. (b) 236 No. 1 (2003) 173-181

H. Trommer, S. Wartewig, R. Böttcher, A. Pöppl, J. Hoentsch, J.H. Ozegowski, R. H.H.
Neubert
The effects of hyaluronan and ist fragments on lipid models exposed to UV irradiation
Int.Journal of Pharmaceutics 254 (2003) 223-234

K. M. Neyman, D. I. Ganyushin , V. A. Nasluzov, N. Rösch, A. Pöppl, M. Hartmann
Electronic g values of Na+-NO and Cu+-NO complexes in zeolites: Analysis using a
relativistic density functional method
Phys. Chem. Chem. Phys. 5 (2003) 2429-2434

H. Braeter, D. Michel
An exactly soluble model for distortive structural phase transitions in a crystal with a
single defect
physica A 321 (2003) 543 - 564

E. Erdem, R. Böttcher, H.-C.Semmelhack, H.-J. Gläsel, E. Hartmann
Multi-frequency EPR study of Cr3+ doped lead titanate (PbTiO3) nanopowders
Phys: Stat: Sol: (b) 239 (2003) R7-R9

E. Erdem, R. Böttcher, H.-C. Semmelhack, H.-J. Gläsel, E. Hartmann, D. Hirsch
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Preparation of lead titanate ultrafine powders from combined polymerisation and
pyrolysis route
J. Mat. Sci. 38 (2003) 3211-3217

H. T. Langhammer, T. Müller, R. Böttcher, H.-P. Abicht
Crystal structure and related properties of copper-doped barium titanate ceramics
Solid State Science 5 (2003) 965-971

A. Pampel, J. Kärger, D. Michel
Lateral diffusion of a transmembrane peptide in lipid bilayers studied by pulsed field
gradient NMR in combination with magic angle sample spinning
Chem. Phys. Lett. 379 (2003) 555 - 561

E. V. Charnaya, D. Michel, C. Tien, Yu. A. Kumzerov, D. Yaskov
The Knight shift in liquid gallium confined within porous glasses and opals
J. Phys.: Condens. Matt. 15 (2003) 5469 - 5477

D. Michel, A. Pampel, J. Roland
Investigation of conformational changes of organic molecules sorbed in zeolites by proton
magnetic resonance spectroscopy
J. Chem. Phys. 119 (2003) 9242-9250

M. Gutjahr, R. Böttcher, A. Pöppl
133Cesium HYSCORE Investigation of the Di-tert-Butyl Nitroxide-Cs+ Adsorption
Complex in CsNaY Zeolite
J. Phys. Chem. B 107 (2003) 13117-13122

O. Klepel, A. Loubentsov, W. Böhlmann, H. Papp
Oligomerization as an important step and side reaction for skeletal isomerization of
linear butenes on H-ZSM-
Appl. Catalysis A: General 255 (2003) 349-354

J. Hoentsch, Yu. Rosentzweig, D. Heinhold, K. Köhler, M. Gutjahr, A. Pöppl, G.
Völkel, R. Böttcher
A Q-Band Pulsed ENDOR Spectrometer for the Study of Transition Metal Ion
Complexes in Solids
Appl. Magn. Reson. 25 (2003) 249-259

J. M. Wesselinowa, D. Michel, H. Braeter, N. M. Plakida, J. Petersson, G. Völkel
Width of the critical region at incommensurate phase transitions
Phys. Rev. B, 68 (2003) 224109-1 - 224109-5

J. Petersson, D. Michel
Obituary Professor Dr. Horst Müser (1925 - 2003)
Ferroelectrics 297 (2003) 1 - 2
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Conference contributions

Talks

”Characterization of Active Sites in Zeolites by Means of EPR Spectroscopy”, A. Pöppl,
M. Gutjahr, T. Rudolf, V. Umamaheswari, 45th Rocky Mountain Conference on
Analytical Chem-istry”, Denver, 2003

”High-field CW-EPR Studies of Chromium-doped PbTiO3 nanopowders”, E. Erdem, R.
Böt-tcher, Statement Colloquium of the priority program High Field EPR in Biology,
Chemistry and Physics, 21-24.09.2003, Hirschegg /Austria

”Size Effects in Chromium-doped PbTiO3 nanopowders”, E. Erdem, R. Böttcher, SFB
Collo-quium, Technical University of Darmstadt, 03.12.2003

”NMR and Acoustic Studies of the Melting-Freezing Phase Transition for Gallium in
Porous Glasses”, E.V.Charnaya, B.F.Borisov, D.Yaskov, D.Michel, C.Tien,
Yu.A.Kumzerov, DPG-Jahrestagung in Dresden 24.–28. 3. 2002, Arbeitskreis
Festkörperphysik

”Domänenstruktur und Mechanismus der Phasenübergänge in TMCC-Kristallen”, D.
Michel, S. Mulla-Osman, G. Völkel, Z. Czapla, DPG-Jahrestagung in Dresden 24. bis
28. März 2002, Arbeitskreis Festkörperphysik

”35Cl NMR study of critical fluctuations in bis(4-chlorophenyl)sulphone
[(ClC6H4)2SO2]”, A. Taye, D. Michel, J. Petersson, DPG-Jahrestagung in Dresden 24.
bis 28. März 2002, Arbeits-kreis Festkörperphysik

”Dielectric properties of a DMAGaS/DMAAS mixed crystal”, J. Banys, G. Völkel, R.
Bött-cher, D. Michel, Z. Czapla, DPG-Jahrestagung in Dresden 24. bis 28. März 2002,
Arbeits-kreis Festkörperphysik

”Study of Order and Disorder of TMA ions in Tetramethylammonium (TMA) Cadmium
Chlorid Type Solids by NMR”, Dieter Michel, invited talk, RAMIS 03, Poznan, April 24
-26, 2003, Vortrag am 24th April, 1000 -1045 h

”Proton Conductivity as Studied by 2D Exchange NMR”, Dieter Michel, Invited
Lecture AMPERE XI NMR SCHOOL in Zakopane, June 1 - 6, 2003

”Order-disorder of TMA ions and phase transitions in tetramethylammonium calcium
chlorid (TMCC) studied by NMR”, Dieter Michel, Samir Mulla-Osman, Georg Völkel,
Zbigniew Czapla, 10th European Meeting on Ferroelectricity (EMF10), Cambridge,
August 3 - 8, 2003

”NMR and acoustic studies of metallic gallium embedded into porous glasses and
artificial opals”, D.Michel, B.F.Borisov, E.V.Charnaya, C.Tien,
D.Yaskov,Yu.A.Kumzerov, invited lecture, 5. Specialized Colloque AMPERE 2003,
Portoro, Slovenia, September 8 - 12, 2003
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”Magnetische Resonanzmethoden zum Studium von Ordnungs- und
Unordnungsphänomenen in Ferroelektrika”, D. Michel, Vortrag zum Heraeus-Ferienkurs
”Ferroelektrika - Intelligente Materialien für Aktoren, Sensoren und Speicher”, MLU
Halle, 22. 09.2003

D. Michel, Kolloquiumsvortrag, 20.11.03, MLU Halle, Fachbereich Physik, anläßlich des
Festkolloquiums anläßlich des 65. Geburtstags von Prof. Dr. Horst Schneider,

Posters

”ESR SPECTROSCOPY OF CU(I)-NO ADSORPTION COMPLEXES IN
ZEOLITES”, A. Pöppl, V. Umamaheswari, M. Hartmann, Christoph Freysoldt, Joachim
Reinhold, 5th Meeting of the European Federation of EPR Groups, Lisbon, 2003

”A COST-EFFICIENT Q-BAND PULSED ENDOR SPECTROMETER FOR THE
STUDY OF TRANSITION METAL ION COMPLEXES IN SOLIDS”, J. Hoentsch, Yu.
Rosentzweig, K. Köhler, M. Gutjahr, A. Pöppl, G. Völkel, R. Böttcher, 5th Meeting of
the European Federa-tion of EPR Groups, Lisbon, 2003

”Preparation of lead titanate ultrafine powders from combined polymerisation and
pyrolysis route”, E. Erdem, R. Böttcher, H.-C. Semmelhack, H.-J. Gläsel, E. Hartmann,
D. Hirsch, Spring Meeting of the Condensed Matter Division of the German Physics
Society, Dresden, 24-28.03.2003

”Multi-frequency EPR study of Cr3+ doped lead titanate (PbTiO3) nanopowders”, E.
Erdem, R. Böttcher, H.-C. Semmelhack, H.-J. Gläsel, E. Hartmann, 5th Meeting of the
European Fed-eration of EPR Groups, Lisbon, 2003

”EPR study of Cr3+ doped lead titanate”, E. Erdem, R. Böttcher, H.-C. Semmelhack,
H.J. Gläsel, E. Hartmann, 25th Discussion Meeting of GDCh, , Leipzig, 2003

”Synthesis and Characterization of Ferroelectric Nanopowders”, E. Erdem, R. Böttcher,
H.J. Gläsel, E. Hartmann, International Nanotechnology Symposium- nanofair 03,
Dresden, 2003

”The Low-Temperature Phase of Chromium Doped Dimethylammonium Gallium
Sulfate Hexahydrate (DMAGaS) Studied by Electron Paramagnetic Resonance”, G.
Völkel, R. Böttcher, D. Michel, Z. Czapla, DPG-Jahrestagung in Dresden 24. bis 28.
März 2002, Arbeitskreis Festkörperphysik

”Critical dynamics in BCPS at the N-IC phase transitions”, D. Michel, J. Petersson, A.
Taye 10th European Meeting on Ferroelectricity (EMF10), Cambridge, August 3 - 8,
2003

”1H NMR Spectroscopy of Molecules Adsorbed in Porous Media ”, D. Michel, A.
Pampel, J. Roland, 5th Specialized Colloque AMPERE 2003, Portoro, Slovenia,
September 8 - 12, 2003
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”Critical dynamics at N-IC phase transitions”, D. Michel, J. Petersson, A. Taye, 5th
Special-ized Colloque AMPERE 2003, Portoro, Slovenia, September 8 - 12, 2003

”Proton NMR spectroscopy at very high magnetic fields”, D. Michel, A. Pampel, Alpine
NMR Conference, 14 th to 18 th Sept 2003, Chamonix, France

4.2.20 Guests

A large number of guests have visited our group in 2003 about which we cannot report
here in detail. This includes also numerous guests from abroad, e.g. from Israel, France,
Lithuania, Poland, Syria, Vietnam, Russian Federation (St. Petersburg, Kazan), and the
United States.
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4.3 Semiconductor Physics

4.3.1 Introduction

In 2003 we have enjoyed tremendous progress in our activities in the fields of ZnO and
related compounds and self-assembled nanostructures. Our efforts related to nanos-
tructures are supported now within the Forschergruppe 522 Architecture of nano- and
micro-dimensional building blocks (based in Leipzig1). With funding in the framework of
Forschergruppe 404 Oxide interfaces (based in Halle/Saale2) heterostructures are investi-
gated, in particular CdZnO/MgZnO quantum wells, oxide Bragg mirrors and ferroelectric
ZnO/BaTiO3/ZnO structures. The work regarding magnetic ZnO-based alloys is per-
formed in the ’Nachwuchsgruppe’ (Young Research Team) Nano-Spintronics3, lead by
Dr. Heidemarie Schmidt. We enjoy a fruitful collaboration with the Superconductivity
and Magnetism group with regard to the magnetic properties of transition metal doped
ZnO and Schottky contacts on GaAs including ferromagnetic metals.

We have fabricated and investigated MgxZn1−xO alloys now in the complete range
0 ≤ x ≤ 1. MnxZn1−xO thin films with a few percent Mn have been found to be fer-
romagnetic at room temperature. Next year will see increased efforts in the study of
CdxZn1−xO and alloys including other transition metals.

ZnO nanowhiskers have been fabricated using thermal growth and pulsed laser depo-
sition. First results have in the meantime also been achieved for the growth of ZnO-based
alloy wires, such that we are close to our goal to grow nanowire heterostructures.

We enjoy close collaboration with the Institute of Anorganic Chemistry, in particular
with our colleague Dr. Volker Gottschalch, who is fabricating excellent III-V material
using MOVPE, such as boron and nitrogen alloyed InGaAs, and GaAs-based nanostruc-
tures, such as nanowhiskers and scrolls.

Using empirical pseudopotentials we have successfully modelled the band structures
of group-V nitrides, also with the ’new’ small InN band gap. Excellent agreement has
been found between our theoretical and experimental data for the UV dielectric function
of ZnO.

We gratefully acknowledge the arrival of equipment in the framework of the ’HbfG-
Verfahren’ to characterize semiconductors and semiconductor devices on the wafer level
with optical and electrical methods. Also we could expand the cathodoluminescence set-
up with a 1 m monochromator for high spectral resolution studies of single nanowires.

A significant amount of time was invested in coordinating the application for a Network
of Excellence in the 6th framework programm of the EC in the field of self-assembled
semiconductor nanostructures. We have now taken all necessary steps and look forward
to receiving the contract and starting the network SANDiE with 28 European partners
in June 2004.

Please look through the following abstracts to learn about some more details of our
research and publications. Links to the papers can mostly be found on our WWW site4.

M. Grundmann

1www.uni-leipzig.de/∼for522
2www.physik.uni-halle.de/FG/fg main.html
3www.uni-leipzig.de/∼nse
4www.uni-leipzig.de/∼hlp
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4.3.2 ZnO nanowire arrays on sapphire grown by high-pressure
pulsed laser deposition

M. Lorenz, E. M. Kaidashev, A. Rahm, T. Nobis, H. Hochmuth, J. Lenzner, M. Grund-
mann

Flexible control of the diameter and the shape of ZnO nanowires is achieved using high-
pressure pulsed laser deposition. A few monolayers of gold are required to initiate the
nucleation of well aligned ZnO nanowire arrays on a-plane and c-plane sapphire. The
wire diameter was varied between 50 and 3,000 nm. Cathodoluminescence spectra taken
on single ZnO nanopillars show detailed bound (FWHM (I6) = 1.5 meV at T = 8 K) and
free exciton peak features similar to MOCVD grown nanowires [1, 2, 3].

Figure 1 shows a scheme of the multi-target high-pressure PLD chamber designed
for ZnO nanowires and heterostructures. The main part of the chamber is a T-shape
quartz tube with outer diameter of 30 mm. The flexibility of the proposed PLD process
concerning size and shape of the ZnO nanostructures is demonstrated in Figs. 2b and
3, respectively. Fig. 2b shows the effect of the target to substrate distance in the high-
pressure PLD system on the diameter of the ZnO nanowires. Fig. 3a shows the effect of
substrate covering with gold using a mask with 100µm holes. The growth of free stand-
ing ZnO nanowires is clearly limited to the gold coated substrate region thus illustrating
the importance of gold for the nanowire nucleation process. On the substrate areas not
covered with gold only a thin ZnO layer is found, as shown in Fig. 3a and b. Figure 3b-f
shows main shapes of PLD grown ZnO nanowires, with increasing structural complexity.
Thus, we demonstrate the flexibility of high-pressure PLD to grow ZnO nano- and mi-
crostructures in a wide morphology range [2, 3].

(1) (2)
Fig. 1: Scheme of high-pressure PLD chamber for nano-heterostructures consisting of
a T-shape quartz tube. Fig. 2: Increasing size of ZnO nanowires for decreasing target
to substrate distance during PLD growth: (a) nanowire diameter 100–150 nm at 30 mm
distance, (b) 1,000 nm diameter at 10 mm distance, and (c) 2,500 nm diameter at 5 mm
distance, inset shows top view. The label NiO indicates a NiO nucleation layer instead
of gold.
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Fig. 3: Typical shapes of ZnO nanostructures on sapphire for different PLD growth condi-
tions: (a) nanowire growth limited to monolayer gold nucleation film with 100 µm diame-
ter, (b) needle-like structures, preferably grown on a-plane sapphire upon reduced plasma
density, (c) hexagonal nanocrystals with top of high index planes on c-plane sapphire,
grown upon slightly reduced Ar pressure of 50 instead of 100 mbar, and (d) nanocrystals
with polygon cross section and top cap, grown by successive ablation from a ZnO and
a ZnO:Zn target. Dot-like (e) and branched tripod-like (f) structures have been grown
using a CeO2 buffer layer.

This work is supported by the DFG within the framework of FOR 522 (Gr 1011/11-1),
and by BMBF Wachstumskern INNOCIS under Grant No. 03WKI09.

[1] M. Lorenz, J. Lenzner, E. M. Kaidashev, H. Hochmuth, M. Grundmann, Ann. Phys.
13, 39 (2004).
[2] T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, J. Lenzner, M. Grundmann, Nano
Letters (2004) in press.
[3] M. Lorenz, E. M. Kaidashev, A. Rahm, T. Nobis, H. Hochmuth, J. Lenzner, M.
Grundmann, unpublished
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4.3.3 Spatially resolved optical properties of single ZnO
microcrystals

Th. Nobis, A. Rahm, M. Grundmann

We investigate the local optical properties of zinc oxide micro- and nanostructures us-
ing spatially resolved cathodoluminescence (CL) imaging. For each digitally controlled
scan position of the electron beam of a scanning electron microscope (SEM) a complete
CL spectrum is recorded in the spectral region of interest.

A top view SEM image of the investigated hexagonal micropillars is given in Fig. 1a.
At room temperature those pillars exhibit two broad luminescence bands, the first around
3.23 eV (UV) according to radiative recombination of free excitons, the second at 2.3 eV
(VIS) attributed to deep levels such as oxygen or zinc vacancies. When mapping the
average intensity ratio of both luminescence bands the spatial distribution of deep levels
can be visualized as depicted in Fig. 1b. Apparently, UV emission is extremely enhanced
at all the pillars’ centers (bright regions) whereas VIS emission is suppressed there. When
approaching the border of the pillars, the intensity ratio decreases below 0.1 and green
emission dominates (dark regions) indicating an increasing influence of deep defects.

To reveal reasons for the enhanced UV luminescence intensity highly resolved low
temperature CL point spectra have been collected shown in Fig. 1c. The spectrum from
the border of the pillar at point B shows a dominating narrow donor bound exciton
line at 3.3607 eV (I6, FWHM = 1.6 meV), indicating a neutral aluminium donor [1]. In
comparison to point B, at point A the CL intensity is about 20 times greater, but the
spectral maximum is shifted by a few meV to a lower energy of 3.3575 eV in association
with a line broadening of about a factor of 6.

These results indicate the local concentration and accumulation of aluminium at the
center of the studied ZnO pillars, since that would explain both the increased donor bound
exciton emission and the broadened line shape. Strain effects have been observed on pil-
lars clamped by others and result in a continuously shifted I6-peak that remains sharp.
Whether the Al accumulation is caused by diffusion from the Al2O3 substrate or due to
other processes is one question of further investigations. For a detailed discussion see [2].

Fig. 1: (a) SEM-image (top view) of ZnO micropillars grown by PLD. (b) Spatial map of
the UV-VIS-intensity ratio using a logarithmic scale. (c) Local CL spectra at T = 9 K
for the positions A and B as indicated in (a).

[1] B.K. Meyer et. al., phys. stat. sol. (b) 241, 231 (2004)
[2] Th. Nobis et. al., Nano Letters (2004), in press
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4.3.4 MOVPE-growth of AIIIBV-nanowhiskers

J. Bauer∗, H. Herrnberger∗, V. Gottschalch∗, G. Wagner∗, J. Lenzner, M. Grundmann
∗ Department of Inorganic Chemistry, Semiconductor Chemistry Group, University of Leipzig

The worldwide interest in semiconductor technology concentrates on the formation of
nanoscaled building blocks to make electronic devices faster and more efficient. New effects
in these materials (e.g. quantum confinement of electrons in low-dimensional structures)
lead to new applications in optoelectronics.

We investigate the growth of free-standing column-shaped AIIIBV -nanocrystallites
with metal-organic vapor phase epitaxy. The well-known growth mechanism of silicon
whiskers is described by the ’vapor-liquid-solid’-process [1]. According to this basic con-
cept, we evaporated thin gold films on cleaned GaAs (1̄1̄1̄) As-substrates. We found, that
the gold layer is built up of small clusters at low deposition rates (Fig. 1).

Fig. 1: At low deposition rates
of the gold evaporation process
the deported layer consists of self-
assembled gold-nanoclusters (in-
set : 1µm2 AFM-picture of a 6 nm
thick gold film on GaAs (1̄1̄1̄)As-
substrate). With increasing layer
thickness the clusters lump together
and the cluster size distribution
increases.

The whisker diameter depends directly on the size of the gold clusters. Annealing
measurements showed a coarsening of the cluster size distribution. To accomplish the
most homogeneous diameter distribution we disclaimed any additional annealing step in
the growth procedure. According to Fig. 1 the whisker diameter can be tuned due to the
gold film thickness. In that way, we reached dense fields of GaAs-whiskers with diameters
less than 50 nm (Fig. 2).

Fig. 2: MOVPE-
grown narrow orga-
nized GaAs-nano-
whiskers perpendicu-
lar to the substrate
using TMGa and
AsH3 at 480◦C.
The GaAs (1̄1̄1̄)As-
substrate was covered
with an 1 nm thick
gold film.

[1] Givargizov et al., J. Cryst. Growth 31, 20 (1975)
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4.3.5 Preparation of AIIIBV nanotubes from epitaxial thin films

O. Lühn∗, V. Gottschalch∗, H. Herrnberger∗, J. Lenzner
∗ Department of Inorganic Chemistry, Semiconductor Chemistry Group, University of Leipzig

The method of self-rolling nanotubes from strained semiconductor heterostructures
was first introduced by Prinz et al. and enables to build nanotubes of various length and
radii [1]. By etching a sacrificial AlAs layer, a moment of force develops. Continuum
strain relaxation theory predicts the 〈100〉-directions as preferred winding directions in
the cubic zinc blende structures (see next section).

Strained heterostructure bilayers of BxGa1−xAs/InyGa1−yAs (0.02 < x < 0.04; 0.16 <
y < 0.23) of different thicknesses (10 nm–20 nm) with AlAs as the sacrificial layer were
grown on (100) oriented GaAs with low-pressure MOVPE.

Material selective etching of Al0.35Ga0.65As and AlAs resulted in a preferred etching
direction which is the 〈100〉 (Fig. 1) and resembles the preferred direction of rolling up.
This SEM picture shows the resulting square of Al0.35Ga0.65As; the formed planes of
the crystal are 100 equivalent. The sacrificial layer was etched with a solution of citric
acid:hydrogen peroxide. Similar results were obtained for AlAs.

Knowing the preferred etching behavior we can conclude that tubes form, in agreement
with strain relaxation theory, preferentially along the etch front in 〈100〉 direction (Fig. 2a)
and helices along the 〈110〉 direction (Fig. 2b).

20 µm20 µm

Fig.1: Etched square.

5 µm5 µm

Fig.2a: Tube along 〈100〉.

2µm2µm

Fig.2b: Helix along 〈110〉
The influence of lateral etch rates on the rolling process is shown in figure 3. Photolitho-
graphy was used to define the starting conditions of the roll-up process (Fig.4). We
prepared squares of different sizes by depositing a photoresist on the crystal surface and
etched them down to the substrate. Afterwards the rolling process was initiated by etching
the sacrificial AlAs layer.

(110)
(110)
(110)
(110)

Fig.3: Overview directional
rolling.

<100> 17 µm<100> 17 µm<100><100> 17 µm

Fig.4: Formed tubes
along 〈100〉.

1,3 µm

<110

1,3 µm1,3 µm

<110

1,3 µm

<110

1,3 µm1,3 µm

<110

Fig.5: Broken tube along
〈110〉

Tubes roll up along the 〈100〉 direction from the starting edges (Fig. 4). By rolling up
along 〈110〉 the tubes break along the cleavage plane (Fig. 5) which lies in the axis of the
rolled-up tube.

[1] Prinz et al., Physica E 6, 828 (2000).
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4.3.6 Theory of strained nanoscroll heterostructures

M. Grundmann

Nanoscrolls are a novel type of nanostructure, cylindrically or spirally rolled, strain-
engineered semiconductor films which have been reported first in [1]. The strain is built
in by pseudomorphic growth of materials lattice mismatched to the substrate. For suf-
ficiently large strain, small sheet thickness d and great length L of the sheet, the strain
relaxation leads to spirally rolled structures with many windings. Various novel applica-
tions like pipes or nanocoils have been envisioned for such structures.

We model the strain relaxation in nanoscrolls made up from semiconductor multi-
layers using continuum elasticity theory [2]. The scroll strain energy E

E = C11−C12

2C11

(
C11(εt + εy)

2 + C12(ε
2
t + ε2y)

)
+ (2C44 − C11 + C12)

( εt−εy

2

)2
sin2(2φ)

depends on the winding direction φ (azimuthal angle with respect to [100]) due to
the cubic symmetry of the semiconductors. εt and εy denote the strains in the tangential
direction and along the cylinder axis, respectively. Therefore also the bending radius
of the scroll depends on φ. 〈100〉 is predicted the preferred winding direction (Fig. 1a)
in agreement with experiment which shows that narrow sheets form curls with winding
along 〈100〉 (Fig. 1b and previous section). The inclusion of anharmonic strain (third
order elastic coefficients) leads to a small decrease of the scroll radius [2].

(a) (b)
30 µm

[010]

=14°�

[100]

Fig. 1: (a) Strain energy (in units of the strain energy of the flat pseudomorphic layers)
of a scroll of a 4-layer SiGe structure (three layers of Si0.3Ge0.7, Si0.6Ge0.4 and Si0.8Ge0.2,
each 3 nm thick and a 1 nm Si cap) as a function of radius for winding directions along
〈100〉 and 〈110〉. Top (bottom) curves without (with complete) strain relaxation along
the cylinder axis. Vertical lines indicate the positions of the respective energy minima.
From [2]. (b) SEM image of curled InGaAs/GaAs nanoscroll rolled φ = 14◦ off 〈100〉.
The stripe from which the film was rolled off is indicated by white dashed lines. From [3].

[1] V.Y. Prinz, V.A. Seleznev, A.K. Gutakovsky, Proc. 24th Int. Conf. on the Physics of
Semiconductors, Israel, 1998, p. Th3-D5.
[2] M. Grundmann, Appl. Phys. Lett. 83, 2444 (2003).
[3] S. Mendach, University of Hamburg, private communication.
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4.3.7 Pulsed laser deposition of undoped and doped ZnO thin
films and multilayers

M. Lorenz, H. Hochmuth, H. von Wenckstern, E. M. Kaidashev, R. Schmidt-Grund,
G. Ramm, M. Grundmann

Epitaxy of undoped and doped ZnO thin films by means of pulsed laser deposition is
established now as a flexible, fast and cost effective growth technique for high-quality
material for numerous research activities and applications. These include:

1. Undoped ZnO thin films with high electron mobility at 300 K [1].
2. ZnO-MgO Bragg resonator multilayer structures, see Fig. 1 (and Sect. 4.3.12).
3. ZnO-MgO thin films for determination of optical constants by spectroscopic ellip-

sometry [2] and structural analysis in cooperation with Prof. A. Krost, University
of Magdeburg.

4. Attempts for p-type conducting ZnO thin films by doping with N, Ga, Li, Sb, P [3]
(see Sect. 4.3.10).

5. Ferromagnetic ZnO thin films by doping with Fe, Mn, Ni in cooperation with BMBF
young scientists group ’Nano-Spintronics’ (Dr. H. Schmidt) (see Sect. 4.3.8).

6. ZnO thin films with high and laterally homogeneous luminescence yield at room
temperature for innovative detector applications, in cooperation with ElMul Tech-
nologies Ltd., Yavne, Israel.

(a) (b)
Fig. 1: (a) SNMS concentration depth profile of a 9.5 pair ZnO-MgO Bragg multilayer
on sapphire. (b) Spectral reflectivity of the 9.5 pair Bragg resonator which is analyzed in
(a). Inset shows simulation of a 22.5 pair MgZnO-MgZnO resonator.

This work was supported by BMBF Wachstumskern INNOCIS under Grant No.
03WKI09, and by DFG SPP 1136.

[1] E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H.-C. Semmelhack,
K.-H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann, Appl. Phys.
Lett. 82, 3901 (2003).
[2] R. Schmidt, B. Rheinländer, M. Schubert, D. Spemann, T. Butz, J. Lenzner, E. M.
Kaidashev, M. Lorenz, M. Grundmann, Appl. Phys. Lett. 82, 2260 (2003).
[3] C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev,
M. Lorenz, M. Grundmann, Appl. Phys. Lett. 83, 1974 (2003)
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4.3.8 Mn-doped ZnO films for spintronics

Heidemarie Schmidt∗, Erick Guzmán∗, Mariana Diaconu∗, A. Setzer∗∗, P. Esquinazi∗∗, H.
v. Wenckstern, G. Benndorf, H. Hochmuth, M. Lorenz, M. Grundmann
∗ BMBF-Nachwuchsgruppe ’Nano-Spinelektronik’ ∗∗Superconductivity and Magnetism Group

By incorporating 3d transition metals [1] into a semiconductor one obtains alloyed or
hybrid materials for new devices based on spin manipulation, for example spin-transistors
and magneto-optical sensors. The saturation magnetization (measured by SQUID) of
pulsed laser deposited Zn1−xMnxO thin films on sapphire substrates with x = 0.04
amounts to 0.065 emu g−1 and 0.02 emu g−1 at 10 K and at room temperature, respec-
tively. The structural, electrical, and magnetic properties of the Zn1−xMnxO thin films
strongly depend on the PLD target preparation, oxygen partial pressure, and growth tem-
perature. As can be seen from the AFM and SQUID measurements on Zn0.96Mn0.04O and
Zn0.94Zn0.06O room temperature ferromagnetism seems to be favored by formation of a
larger crystallites.

(a) (b)
That corresponds to the observation that ferromagnetism in ZnMnO nanostructures shows
higher coercivity field strength than in ZnMnO thin films [2]. As already known from
unintentionally doped, naturally n-type ZnO where the oxygen partial pressure also sup-
presses the formation of intrinsic donor impurities (VO, Zni, ZnO), the n-type conductivity
in ZnMnO thin films is tuned from n =1018 cm−3 to highly compensated for a pressure
ranging from 0.0001 mbar to 0.3 mbar, respectively. The free charge carrier tunability and
also the occurrence of an additional very efficient luminescence transition M1 at low tem-
peratures which reflects intrinsic properties of Mn in ZnO [3] do not sensitively depend
on the Mn content. In contrast to the band gap shift of isoelectronically doped ZnMgO
or ZnCdO, the D0X and D0X-LO optical transitions are unshifted in ZnMnO. The M1

and D0X PL intensity depend linearly on the photoluminescence excitation intensity (for
D < 80 W/cm2).

[1] E. Guzmán et al., Ann. Phys. 13, 57 (2004).
[2] V.A. L. Roy et al., Appl. Phys. Lett. 84, 756 (2004).
[3] P. Dahan and V. Fleurov, J. Phys.: Cond. Matter 6, 101 (1994).
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4.3.9 Homogeneous Schottky contacts on ZnO

H. v. Wenckstern, G. Biehne, J. Lenzner, R. Pickenhain, H. Hochmuth, M. Lorenz, M.
Grundmann

The II-VI semiconductor ZnO is a promising material for the realization of different
classes of devices as for instance emitters or detectors in the ultra-violet range. Metal-
semiconductor-metal (MSM) photodiodes have very fast response times and are therefore
suitable structures for the realization of high speed detectors. MSM photodiodes are
made up of two Schottky contacts (SC) that are opposingly connected. The quality of
the SC’s strongly influences the performance of the device. Up to now, SC’s on ZnO do
not fulfill requirements as low leakage currents, small ideality factors, and reproducibility
necessary for device application. We have investigated the homogeneity of SC’s on ZnO
by means of electron beam induced current measurements in dependence on the surface
preparation prior to the evaporation of the contact metal. Wet chemical etching methods
and a treatment in N2O plasma were used. We found that the induced current is homo-
geneous for contacts treated in the N2O plasma as depicted in Fig. 1a. Reflection high
energy electron diffraction measurements showed that the surface is not roughening due
to this procedure [1]. In contrary, EBIC images of wet chemically etched samples revealed
lateral variations of the induced current signal (Fig. 1b). The bright spots and the bright
veined structure correspond to regions where higher currents are induced. A spot of the
inhomogeneous contact was imaged with higher magnification.

(a) (b)
Fig. 1: (a) EBIC image of homogeneous SC. (b) EBIC image of inhomogeneous SC. (c)
SEM image showing etch pits. (d) EBIC image of the same surface spot.

Fig. 1c is a secondary electron microscopy (SEM) image showing etch pits resulting
from the etching procedure. Fig. 1d is an EBIC image of the same surface spot. A
comparison of the two figures implies that the veined structure in the EBIC image does
not correlate with the etch pits visible in Fig. 1c. Within the bright spot in the middle of
Fig. 1d there is only a small variation in the induced current signal. This might be due to
etch pit induced surface steps since there are hexagonal grooves at the same surface patch
in Fig. 1c. Overall the effect of the etch pits is negligible compared to the large regions
showing almost no induced current signal. The origin of these dark regions is under
further investigation but remains up to now unclear. In conclusion, the treatment of ZnO
in a N2O plasma prior to the deposition of the contact metal results in homogeneous SC’s
and is therefore preferred to chemical etching.

[1] H. von Wenckstern, E. M. Kaidashev, M. Lorenz, H. Hochmuth, G. Biehne, J.
Lenzner, V. Gottschalch, R. Pickenhain, M. Grundmann, Appl. Phys. Lett. 84, 79
(2003).



4.3. SEMICONDUCTOR PHYSICS 163

4.3.10 Acceptor incorporation in ZnO thin films

H. v. Wenckstern, S. Heitsch, E. M. Kaidashev, M. Lorenz, G. Benndorf, M. Grundmann

Zinc oxide is a transparent semiconductor with a band gap of 3.44 eV at T=2 K and a
high exciton binding energy of approximately 60 meV. Therefore, it is a promising material
for effective excitonic devices working in the UV spectral range. ZnO thin films doped with
lithium and nitrogen or antimony have been investigated by means of photoluminescence
and Hall measurements. The films were grown on a-plane or c-plane sapphire by pulsed
laser deposition.

The Li and N doped samples were realized by sputtering a ZnO-target containing
5% Li3N. The films show n-type conduction. Photoluminescence was excited by the
325 nm line of a He-Cd laser with a maximum power density of 80 W/cm2 and measured
at temperatures between 2K and 300K. The luminescence spectra of ZnO:Li,N samples
show a donor-acceptor-pair (DAP) transition at ∼3.25 eV which could be identified on
the basis of temperature dependent measurements (Fig. 1a). The involved acceptor can
be assigned to the nitrogen acceptor at an oxygen site. Assuming the involved donor
to be an effective-mass donor with a binding energy of about 65 meV (as determined
from Hall measurements at nominally undoped ZnO thin films), the acceptor binding
energy of nitrogen in ZnO may be approximated to be ∼130 meV. Sb-doped samples were
produced using ZnO-targets containing 0.5% or 5% Sb. The first have a free electron
concentration of about 1017 cm−3 the latter from 5 × 1018 to 5 × 1019 cm−3. Annealing
the samples in flowing nitrogen at 800◦C does not change the electron concentration of
the samples with lower Sb-content but the electron concentration of the higher doped
samples decreases by a factor of 10. Such an annealed sample showing a clear drop in
the electron concentration was investigated by photoluminescence spectroscopy. In the
corresponding low-temperature spectrum a donor-acceptor-pair transition can be found
at ∼3.24 eV (Fig. 1b). Following the above mentioned procedure, the antimony acceptor
in ZnO can be approximated to have a binding energy of ∼140 meV. In conclusion, we
were able to incorporate acceptors in ZnO. Photoluminescence measurements show DAP-
transitions from which the acceptor binding energies of N and Sb were approximated to
be ∼130 and ∼140 meV, respectively.

(a) (b)
Fig. 1: (a) Temperature dependence of the DAP line and its first phonon replica of
ZnO:Li,N, (b) dependence on the excitation power of the DAP line and its first phonon
replica of ZnO:Sb at 2 K.
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4.3.11 VUV ellipsometry and band-structure of MgZnO

R. Schmidt-Grund, D. Fritsch, M. Schubert, B. Rheinländer, H. Schmidt,
E. M. Kaidashev, M. Lorenz, C. M. Herzinger∗, and M. Grundmann
∗ J.A. Woollam Co., Inc., Lincoln, NE 68508, U.S.A

For ternary wurtzite MgxZn1−xO films, optical properties were determined using spectro-
scopic ellipsometry and the band-structure was obtained from empirical pseudopotential
calculations (EPM). The MgxZn1−xO (0 ≤ x ≤ 0.53) layers with a thickness of typically
1 µm have been deposited by pulsed laser deposition on sapphire substrates. For the
a-plane ZnO layer, the spectra of the dielectric functions for the polarization parallel and
perpendicular to the c-axis show a series of transitions which named here E1 - E6. These
can be assigned to critical point transitions in the band structure obtained by empirical
pseudopotential calculations (Fig. 1).

(a) (b)
Fig. 1: (a) Real (ε1) and imaginary (ε2) part of the dielectric functions of ZnO. The ener-
gies of the observed transitions are indicated by vertical lines. (b) Band-structure of ZnO.
The experimentally observed transitions are assigned to vertical electronic band-to-band
transitions within the calculated band-structure are indicated by vertical bars.

(a) (b)
Fig. 2: (a) Imaginary part of the dielectric function ε2 of MgxZn1−xO. The energies of the
observed transitions are indicated by arrows. (b) Band-to-band transition energies deter-
mined by ellipsometry (filled symbols) and calculated by EPM for T=0 K (open symbols).
The lines at the E3 and E6 transitions are intended to guide to the eye.

For the c-plane MgxZn1−xO layers, the dielectric functions for the polarization per-
pendicular to the wurtzite c-axis was determined. Only two transitions named E3 and E6

are observable. The energies of E3 and E6 are only slightly blue-shifted by the cation sub-
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stitution of Zn by Mg. The fundamental gap energy E0 [1] shows a significant blue-shift
with increasing Mg content which is comparable with theoretical results (Fig. 2).

[1] R. Schmidt et al., Appl. Phys. Lett. 82, 2260 (2003).
[2] R. Schmidt-Grund et al., Thin Solid Films 455-456, pp. 500-504 (2004).

4.3.12 MgxZn1−xO alloys for UV-Bragg-reflectors

A. Carstens, R. Schmidt-Grund, H. Hochmuth, B. Rheinländer, D. Spemann, A. Rahm,
M. Lorenz und M. Grundmann

For Bragg resonators in opto-electronic devices based on ZnO, the alloy system MgxZn1−xO
is a well appropriate candidate. Single MgxZn1−xO layers with x = 0 . . . 1 were deposited
by means of Pulsed Laser Deposition (PLD) on c-plane sapphire. The layer thicknesses
range from 100 nm to 400 nm. The Mg-mole fractions x have been deduced from Ruther-
ford backscattering (RBS) data. In order to design Bragg reflectors, the refractive indices
of both reflector materials have to be known. The refractive index spectrum for a given
mole fraction x > 0.5 was evaluated from the fit of a Cauchy refractive-index model to
the spectra in the ellipsometric parameters for the respective transparency range. The el-
lipsometric parameters were measured in the photon energy range E = (0.75−−4.50) eV.
The band gaps were estimated from transmissivity and reflectivity spectroscopy. The re-
fractive indices for a device-relevant energy E = 3.4 eV are given in Fig. 1a. Considering
the refractive index spectrum for x < 0.5 [1], the materials for the Bragg reflectors should
comprise the mole fraction range x = 0.2−1.0. Because layers with x < 0.4 are of wurtzite
type and for x > 0.6 of rocksalt type, the layer stack of the Bragg reflector should consist
of an alternating series of layers of both types. We have shown that such a layer sequence
can be deposited successfully and a grown ZnO-MgO Bragg reflector works well. On the
basis of all these results the simulation of a realistic version of ZnMgO Bragg reflectors
is demonstrated in Fig. 1b. Applying 15 layer pairs with x=0.2 and 1.0 the reflectivity
surmounts values of 0.9.

(a) (b)

Fig. 1: (a) Experimental values for the refractive index (at fixed photon energy E=3.4 eV)
of MgxZn1−xO compounds for various Mg content. (b) Simulated reflection for a Bragg
stack with x = 0.2 and x = 1.0 for various number of pairs N as labelled.

[1] R. Schmidt et al., Appl. Phys. Lett. 82, 2260 (2003).
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4.3.13 Band dispersion relations of zincblende and wurtzite InN

D. Fritsch, H. Schmidt, M. Grundmann

Until recently the band gap of wurtzite InN (α-InN) was believed to be in the 1.9 to
2.1 eV energy range. New experiments on high-quality α-InN samples reveal a down-
ward correction of the fundamental band gap by approximately 1 eV. Based on the also
re-examined zincblende (β-InN) band gap of 0.59 eV [1], we reinvestigated the electronic
properties of α- and β-InN by means of the Empirical Pseudopotential Method (EPM)
using transferable model potental parameters [2]. The success of this approach has been
demonstrated by investigating the group-III nitrides AlN, GaN, and InN where the Al,
Ga, In, and N model potentials have been the same for both zinc-blende and wurtzite crys-
tals [3,4]. The small β-InN band gap of 0.59 eV has been obtained with the transferable
N potential parameters from [3] and by only changing the In potential parameters. Then
the band structure of α-InN has been calculated with the transferable In and N model
potential parameters. The α-InN band gap of 0.82 eV agrees very well with the 0.81 eV
proposed by Bechstedt and Furthmüller [1] and lies in the experimentally determined
energy range from 0.7 to 0.9 eV. The band structures of InN in both crystal structures
are shown in Fig. 1.
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Fig. 1: (a) Band dispersion of α-InN along high symmetry lines in the Brillouin zone. (b)
Band dispersion of β-InN along high symmetry lines in the Brillouin zone.

Comparing our band structure data with recent experiments using spectroscopic ellip-
sometry [5] we were able to assign critical-point transition energies to eigenenergies at
different points in the Brillouin zone.

Furthermore, investigating the band structures using k·p-methods we determined a
complete set of Luttinger and Luttinger-like parameters for β- and α-InN, respectively,
which are necessary to obtain the valence band effective masses. Our obtained α-InN elec-
tron effective mass of 0.066 m0 agrees well with the only known experimentally determined
value of 0.07 m0 [6].

[1] F. Bechstedt and J. Furthmüller, J. Cryst. Growth 246, 315 (2002).
[2] D. Fritsch, H. Schmidt, and M. Grundmann, Phys. Rev. B 69, 1652XX (2004), in
press.
[3] D. Fritsch, H. Schmidt, and M. Grundmann, Phys. Rev. B 67, 235205 (2003).
[4] H. Schmidt and G. Böhm, Phys. Rev. B 67, 245306 (2003).
[5] A. Kasic et al., submitted to Phys. Rev. B.
[6] J. Wu et al., Phys. Rev. B 66, 201403 (2002).
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4.3.14 Investigation of ZnO band structure using empirical pseu-
dopotentials taking into account spin-orbit interaction

D. Fritsch, H. Schmidt, M. Grundmann

We investigate the band structure of ZnO and its ternary compounds Zn(Mg, Cd)O [1]
which became the focus of new optoelectronic devices in the green, blue and ultraviolet
region by means of the Empirical Pseudopotential Method (EPM) and transferable model
potentials. In order to obtain the Zn, Mg, Cd, and O EPM model potential parameters
from a set of experimentally determined low-temperature transition energies of several
binary II-VI compounds in zinc-blende structure (ZnS, ZnSe, CdS), rocksalt structure
(CdO, MgO), and wurtzite structure (ZnO, ZnS) with partially large spin-orbit interac-
tions, one cannot include the spin-orbit interaction by perturbation theory. For example,
the spin-orbit splitting energy which increases with increasing anion mass for ZnSe and
ZnTe is in the order of magnitude of the band gap energy (Fig. 1a).

(a)

0

1

2

3

4

E
n
e
rg

y
[
e
V

]

ZnO ZnS ZnSe ZnTe

zinc-blende

wurtzite

Eg

∆so

(b)
-10

-5

0

5

10

15
E

n
e
rg

y
[e

V
]

A L M Γ A H K Γ

Eg=3.44 eV, =3 m eV∆so

Fig. 1: (a) Band gap (upper symbols, red) and spin-orbit splitting (lower symbols, blue)
energies of binary wurtzite Zinc compounds. (b) Band dispersion of wurtzite ZnO along
high symmetric lines in the Brillouin zone.

It should be noted that by including the spin-orbit interaction in the Hamiltonian not only
the valence band splitting but also other material parameters as Luttinger and Luttinger-
like parameters can be directly obtained from the calculated band structure, i.e., the
perturbation theoretical k×p-approach can be circumvented. As an example for the suc-
cessful implementation of spin-orbit interaction into our band structure code the calcu-
lated low-temperature band dispersion of wurtzite ZnO where the spin-orbit interaction
energy at the Γ-point amounts to −3 meV is shown in Fig. 1b.

[1] R. Schmidt-Grund, B. Rheinländer, M. Schubert, D. Fritsch, H. Schmidt, A. Rahm,
R.M. Kaidashev, M. Lorenz, C.M. Herzinger, and M. Grundmann, ThP F52 (ICPS-3)
and Thin Solid Films, in press (2004).
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4.3.15 Luminescence spectroscopy and transmission electron
microscopy of ZnO thin films

S. Heitsch, W. Czakai, G. Wagner, G. Benndorf, H. Hochmuth, M. Lorenz, M. Grundmann

Zinc oxide thin films grown by pulsed laser deposition on a-plane sapphire and Si(111),
respectively, have been investigated by means of photoluminescence spectroscopy (PL)
and transmission electron microscopy (TEM).

Photoluminescence was excited by the 325 nm line of a He-Cd laser with a maximum
power density of 80 W/cm2 and measured at 2 K. The PL measurements (Fig. 1) show
two recombination lines of donor-bound excitons (D0X1, D0X2), which can be observed in
both types of structure. Although the peaks are broader in the PL-spectrum of the ZnO
thin film on Si(111), it can be clearly seen, that the energetic positions of the two peaks
are the same for both structures. As the origin of the the D0X1-Peak Meyer et al. [1]
proposed the recombination of an exciton bound to the aluminum donor in ZnO.

In ZnO thin films grown on silicon substrates a donor-acceptor-pair transition (DAP)
can be observed which is not present in ZnO films grown on sapphire. This indicates that
more impurities are present in ZnO grown on Si(111). The DBX-Peak in the PL-spectra
is due to the recombination of excitons bound to structural defects [1]. In the films grown
on Si substrates this peak has a much higher relative intensity and is broader than in ZnO
films grown on sapphire, which indicates that during the growth of ZnO thin films on Si
more structural defects are induced.

This interpretation is also supported by TEM images of a ZnO thin film grown on
Si(111) (Fig. 2). In contrast to the thin films on sapphire, the films on Si consist of
azimuthally twisted pillars which are grown together, i.e. they are polycrystalline.

In conclusion, ZnO thin films on silicon (111) and on sapphire, respectively, show
mainly the same emission characteristics. However, more defects are incorporated in ZnO
thin films grown on silicon (111).

Fig. 1: Photoluminescence spectra of ZnO
thin films grown on a-sapphire and silicon
(111), respectively.

Fig. 2: TEM weak beam image of a poly-
crystalline ZnO film grown on (111) silicon.

[1] B.K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J.
Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, A. V. Rodina, phys.
stat. sol. (b) 241 (2), 231 (2004)
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4.3.16 Dielectric properties of BaxSr1−xTiO3 gradient thin films
grown by combinatorial PLD

M. Lorenz, H. Hochmuth, G. Ramm, H. M. Christen∗, M. Grundmann
∗ CMSD, Oak Ridge National Laboratory, TN, U.S.A.

Ferroelectric thin films can be applied as varactors, phase shifters, dynamic RAMs
and optical waveguide devices. To overcome the undesirable temperature dependence
of the dielectric constant εr and to reduce the loss tangent of BaxSr1−xTiO3 (BSTO)
thin films, adjustment of x and doping with Fe, Mg, Y, Ti, Zr has been examined [1,
2]. In addition, BSTO films with linear Sr, Ba concentration depth gradients have been
deposited by a continuous compositional-spread PLD approach at ORNL [3]. Substrate
was a Pt-covered, Al2O3 - based ceramic suitable for microwave applications. The Ba
and Sr content was varied linearly during film growth from x=0.5 near the substrate to
x =0.85 near the top electrode, as shown by the SNMS depth profile and the plot of the
Sr/(Sr+Ba) ratio in figure 1. The relative dielectric constant and its temperature and
DC bias dependence (figure 1 right) was determined at 1 kHz using capacitance measure-
ments [1, 2]. Compared to homogeneous films without variable composition profile, the
gradient BSTO films show reduced temperature dependence of εr, as expected from the
superposition of the dielectric properties of the BSTO film slices with different Ba and Sr
content.

Fig. 1: SNMS depth profile of a gradient BSTO thin film with Pt top and bottom elec-
trode, deposited by combinatorial PLD approach at ORNL (left), with plot of relative
change of Sr/(Sr+Ba) ratio calculated from the SNMS depth profile (center), and dielec-
tric constant of a gradient BSTO film in dependence on DC bias and temperature (right).

This work was supported by BMBF Leitprojekt ”Supraleiter und neuartige Keramiken
für die Kommunikationstechnik der Zukunft”, TP FKZ 13N8158.

[1] M. Lorenz, H. Hochmuth, M. Schallner, R. Heidinger, D. Spemann, M. Grundmann,
Solid State Electron. 47, 2199 (2003).
[2] M. Lorenz, Schlussbericht des BMBF-Vorhabens FKZ 13N8158,
01.07.2001-30.06.2003.
[3] H. M. Christen, in ORNL-CMSD progress report No. ORNL-6969 (2002) p 76.
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4.3.17 Intrinsic carbon doping of (AlGa)As

V. Gottschalch∗, G. Leibiger∗, G. Benndorf, H. Herrnberger∗
∗ Department of Inorganic Chemistry, Semiconductor Chemistry Group, University of Leipzig

The intrinsic carbon doping of GaAs and (AlGa)As during MOVPE allows the growth
of well-defined doping profiles with high hole concentrations [1]. We have studied the in-
trinsic carbon doping of GaAs-contact and (AlGa)As-cladding layers in (InGa)As double-
quantum well laser diodes (λ ∼ 1.17µm) for typical growth temperatures between 500 and
650◦C and using the precursors TMGa, TMAl, AsH3, and TBAs. Epitaxial layers were
characterized with high-resolution x-ray diffraction (XRD), Hall-measurements, photolu-
minescence (PL), spectroscopic ellipsometry (SE), and transmission electron microscopy
(TEM).

For GaAs we obtained a maximum hole concentration of 3 × 1019 cm−3 using TBAs.
The carbon concentrations obtained using XRD (lattice mismatch of GaAs:C samples)
are in good agreement with the hole concentrations obtained with Hall-measurements, PL
(band-gap shrinkage) and infrared-SE. Figure 1a shows the dependence of the hole (or
carbon) concentration, and of the room temperature mobility, as a function of the III/V
ratio for growth temperature of 540◦C. The x-ray diffraction curves for AlAs-samples of
different carbon concentration (variation of the V/III ratio) are summarized in Fig. 1b.
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Fig. 1: (a) Dependence of hole concentration and Hall mobility on the V/III ratio for
GaAs. (b) Influence on the carbon incorporation on the lattice mismatch of AlAs:C
samples grown by various V/III ratios. (c) L-J-characteristics of 1.17 µm laser diodes
with carbon doped (AlGa)As cladding layers for different growth temperatures and C-
concentrations.

A maximum hole concentration of 4× 1020 cm−3 has been measured for Al0.60Ga0.40As
at a growth temperature of 540◦C. A reduction of V/III-ratio and growth temperature
and an increase of the Al-composition resulted in an increase of the carbon concentration.

Additionally, we have grown laser structures with (GaIn)As/GaAs double quantum
wells as active regions sandwiched between carbon- and Si-doped (AlGa)As layers. The
grown (GaIn)As/GaAs double quantum wells structures were fabricated into oxide stripe
lasers with different stripe widths and cavity lengths. The growth temperature of the
p-cladding layers was variied in the range of 540 to 650◦C (Fig. 1c). The best laser
characteristics was obtain using growth temperature of 650◦C and a V/III ratio of 17.

[1] T. F. Kuech, J. M. Redwing, J. Cryst. Growth 145, 382 (1994).
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4.3.18 Doping of (InGa)(NAs) and (BGaIn)As

G. Leibiger∗, C. Krahmer∗, V. Gottschalch∗, G. Benndorf
∗ Department of Inorganic Chemistry, Semiconductor Chemistry Group, University of Leipzig

(In,Ga)(NAs) alloys have attained great attention in the past few years due to the rapid
decrease of the band-gap energy with increasing nitrogen concentration in combination
with the possibility of lattice matched growth on GaAs substrates. The latter holds also
for the new (BGaIn)As material system which offers new opportunities in strain- and
band-gap engineering. Both systems are of interest for application as absorption layers in
tandem solar cells for which systematic doping studies are a prerequisite. In this work,
we have investigated the Si- and Zn-doping of lattice matched B0.027Ga0.913In0.06As- and
In0.047Ga0.953N0.016As0.0984-layers using metalorganic vapor phase epitaxy (MOVPE) with
disilane and diethylzinc as doping precursors. Epitaxial layers were characterized with
high-resolution x-ray diffraction (HRXRD), photoluminescence (PL), Hall-measurements,
infrared spectroscopic ellipsometry (IR-SE) and transmission electron microscopy (TEM).
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Fig. 1: Free carrier concentration of as-grown Si-doped (a) and Zn-doped (b)
In0.047Ga0.953N0.016As0.0984- (squares) and B0.027Ga0.913In0.06As-layers (triangles) depend-
ing on the ratio of the partial pressure of disilane (a) or DEZn (b) to the partial pressures
of all group-III precursors. All lines are shown to guide the eye.

The p-type In0.047Ga0.953N0.016As0.0984 layers become show n-type conduction for
pSi/pgroup−III-values above 10−3 and a maximum electron concentration of ∼ 6×1018 cm−3

is reached (Fig. 1a). In comparison, the saturation value for the electron concentration
in B0.027Ga0.913In0.06As:Si is clearly reduced (8 × 1017 cm−3), which we attribute to the
competition for the group-III-lattice sites in (BGaIn)As:Si.

In both systems the incorporation of Zn results in p-type conduction (Fig. 1b). The
Zn-distribution coefficient is clearly reduced in In0.047Ga0.953N0.016As0.0984:Zn compared to
B0.027Ga0.913In0.06As:Zn, which might be caused by the lower effective V/III-ratio and the
incorporation of Zn on interstitial sites in In0.047Ga0.953N0.016As0.0984:Zn [1].

Mobilities were determined with IR-SE and Hall-measurements. Generally,
B0.027Ga0.913In0.06As shows higher mobilities as In0.047Ga0.953N0.016As0.0984 due to the lower
tendency for cluster formation and/or a lower number of defects. The PL-intensities in-
crease in both material systems with increasing Si-concentration up to n ∼ 1018 cm−3.

[1] K. Volz, J.Koch, B. Kunert, and W. Stolz, J. Cryst. Growth 248 (2002) 451.
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4.3.19 Light-beam induced current imaging and SNMS depth
profiling of flexible CuInSe2 solar cells

M. Lorenz, T. Nobis, J. Lenzner, G. Ramm, H. Hochmuth, M. Grundmann

Light beam induced current imaging (LBIC) and secondary neutrals mass spectrom-
etry (SNMS) depth profiling are powerful tools for optimization of serial production of
CuInSe2 solar cells at Solarion Photovoltaik GmbH Leipzig, as demonstrated in Figs. 1
and 2. In LBIC, the sample surface is scanned by a laser beam (λ = 632 nm, spot size
1.5µm), and the induced photocurrent (measured at the Mo bottom and ZnO:Al top
contact) is imaged in dependence on laser spot position (Fig. 1). The solar cell investi-
gated in Fig. 1 shows nearly homogeneous, and high quantum efficiency. SNMS depth
profiling gives the intensity of selected isotopic species sputtered by 600 eV Ar-ions from
the sample. The sputter time scale corresponds to the depth. The SNMS depth profile
(Fig. 2) of the flexible solar cell demonstrates the multilayer structure ZnO:Al - ZnO:i -
CdS - CuInSe2 - Mo - Ti - polyimid foil. For example S, Al, and Cd show remarkable
diffusion into deeper cell regions, as confirmed also by ion beam analysis.

(a) (b)
Fig. 1: (a) LBIC scan (100 × 100µm2) of a flexible CuInSe2 solar cell (monochromatic,
λ = 632 nm, quantum efficiency). The points with lower efficiency are due to surface
contamination. (b) photo of the same surface area.

Fig. 2: SNMS isotope intensity vs. sputter time (depth) profile of a typical CuInSe2 solar
cell of Solarion GmbH, Leipzig.

This work was supported by BMBF Wachstumskern INNOCIS under Grant No. 03WKI09.
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4.3.20 BxGayIn1−x−yAs and InxGa1−xNyAs1−y as absorption ma-
terials in thin film solar cells

C. Krahmer*, G. Leibiger*, V. Gottschalch*, H. Herrnberger*, J. Bauer*,
O. Breitenstein**, M. Grundmann
*Department of Inorganic Chemistry, Semiconductor Chemistry Group, University of Leipzig
** Max-Planck-Institut für Mikrostrukturphysik, Halle/Saale

The new material systems BxGayIn1−x−yAs and InxGa1−xNyAs1−y have been investi-
gated within the BMBF ”Wachstumskern INNOCIS” with the intention to use these mixed
crystals as absorption materials in thin film tandem solar cells (GaAs/GaInP). Highest
effiencies in tandem cells can be achieved with a combination of the band-gap energies
of 1.8 eV for the upper cell and 1.1 eV for the lower cell. (BGaIn)As- and (InGa)(NAs)-
mixed crystals can both reach smaller band-gap energies then GaAs due to the reduction
of band-gap with increasing boron and nitrogen incorporation, respectively (Fig. 1a,b)
[1,2].
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Fig. 1: (a) Reduction of band-gap energy with B or N incorporation, (b) photocurrent of a solar
cells with different absorption layers. (c) Structure of a solar cell with GaAs-absorption layer
and I-V-curves of cells with BGaInAs or InGaNAs absorbtion layers.

GaAs based single junction solar cells have been grown to optimize the cells for the
incorporation of the alternative absorption materials (Fig. 1c). Afterwards the absorption
layer in these cells has been replaced by BxGayIn1−x−yAs or InxGa1−xNyAs1−y. The
measured I-V-curves indicate high fill factors and low series resistance (Fig. 1c). However,
in comparison to the GaAs-cells the short circuit current Jsc, the open circuit voltage
Uoc and the fill factor are reduced to the half of the corresponding values of GaAs-
cells. This requires an improvement of the material properties. Furthermore a solar
cell with a GaInP absorption layer (Eg = 1.89 eV) has been investigated as upper cell.
The characteristic values from the I-V-curves are comparable with literature data. First
GaAs/GaInP tandem cells have been grown with an AlGaAs/GaAs tunnel junction.
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[1] D. J. Friedman et al., J. Cryst. Growth 195 (1998) 409.
[2] G. Leibiger, Dissertation, Universität Leipzig (2003).

4.3.21 MOVPE-growth of GaAs on Ge-substrates

S. Scholz∗, V. Gottschalch∗, G. Leibiger∗, G. Benndorf, J. Lenzner, G. Wagner∗
∗ Department of Inorganic Chemistry, Semiconductor Chemistry Group, University Leipzig

The low mismatch of the lattice constant of GaAs and Ge of (0.07%) and the low
difference of their thermal expansion coefficients allow the epitaxial growth of GaAs-based
solar cells on Ge-substrates [1]. With the low indirect band gap of 0.77 eV this material
can be used in a separate junction. The major disadvantage is the heteroepitaxial growth
of the polar AIIIBV-material on the nonpolar Ge-substrate resulting in anti phase domains
(APD) [2]. In this study, we examine the epitaxial growth with varying growth parameters
on differently oriented Ge-substrates. The grown layers were characterized by interference
microscopy, wet etching technique, atomic force microscopy (AFM), photoluminescence
(PL), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and
double crystal x-ray diffraction (XRD).
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Fig. 1: (a) Correlation of XRD-FWHM of the layer signal against the thickness of the nucleation
layer. (b) (110) TEM cross-sectional bright-field image of GaAs(1.2 nm)/ GaAs(990 nm)/Ge(100)
grown at 550◦C and 700◦C, respectively; APB’s are visible.

For a two step growth process it was found, that the smaller the initial grown layer,
the better is the crystalline quality of the second GaAs layer (Fig. 1). For the initial layer
we varied the growth temperature and the V/III-ratio to optimize the surface morphology.
By observing the surface with AFM the best results are obtained at the temperature of
550◦C and the V/III-ratio of 13. For the second layer we used a temperatur of 700◦C
and a V/III-ratio of 92 to obtain a quasi-2D-growth. Plan-view and cross-sectional TEM
show the formation of antiphase boundaries (APB) in GaAs-layers on exactly oriented
Ge(100)-substrates. With increasing the GaAs layer thickness the APB density decreases
(Fig. 2). The interface between GaAs and Ge is quite rough and shows a transition re-
gion of 5–8 nm. The diameters of the APD are 2–5 µm and the APB’s follow selected
orientations. On misoriented Ge-substrates no APB’s were found. Due to Ge-diffusion
into the epilayer the GaAs layer is n-type. Based on our results n-p junction solar cells
were grown on 9◦ off-oriented Ge-substrates.

[1] M. Yamaguchi, Physica E 14 (2002) 84.
[2] P.R. Pukite, P.I. Cohen, J. Cryst. Growth, 81 (1987) 214.
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4.3.22 Peptide cluster ensembles on semiconductor surfaces

K. Goede, M. Grundmann

Hybrid nanostructures of organic molecules and anorganic semiconductors are a fasci-
nating new research area in physics. The combination of single-molecule building blocks
and materials which offer fast and reliable data processing may offer an unimagined range
of applications from fast detection of organics and coated functionalized surfaces to true
nanoscale electronics and data storage in single molecules. Self-assembly techniques seem
necessary to explore this potential. In this regard, using amino-acid based molecules
like peptids, proteins and DNA is one of the most promising approaches. In nature,
recognition and assembly capabilities driven by amino acids govern the replication of all
highly-developed living structures. Yet the application of these principles to the world of
anorganic semiconductors is fundamentally new.

By recording AFM micrographs and subsequently analyzing them, we have quantita-
tively shown that the adhesion rate (the percentage of surface covered by peptide clusters)
of a specially selected 12-mer peptide on nine different semiconductor surfaces ranges from
25% to 0% under the same standard conditions. As an example, two AFM micrographs
of GaAs (100) and Si (100), respectively, are shown in Fig. 1a. By applying a washing
process to remove loose, unbound peptide particles from the surface substrates, we can
exclude these results stemming from (undesired) surface tension effects which might occur
when the watery solution evaporates from the surface. Instead, we ascribe them to the
interplay between the polar amino-acid side chains and the atoms which constitute the sur-
face with their respective electronegativity. The different adhesion rates are qualitatively
explainable by considering these values for the substrate elements under investigation.

Furthermore, we have looked at the substrate-specific differences in size and height
between respective clusters ensembles. As is obvious from Fig. 1b, a low adhesion rate
is accompanied by a large average cluster size and a large average cluster height. This
is probably because for low adhesion rates any binding formation between peptide and
semiconductor is weaker and the peptide tends to bind to other peptide molecules rather
than to the substrate.

(a)
a) b)

(b)
Fig. 1: (a) Two exemplary AFM micrographs of semiconductor surfaces, partly covered by
a peptide. Both samples have been prepared under the same conditions. left: (1.6µm)2

GaAs (100), showing a high adhesion rate, right: (10µm)2 Si (100), showing a low ad-
hesion rate. From the size of the micrograph it is obvious that this low rate on Si is
typical for the whole surface and not just for a specific part. (b) Peptide adhesion rate
(left scale) and average peptide cluster size and height (right scale) for different semicon-
ductor substrates. The error bars indicate the respective standard deviation which has
been obtained from measurements on eight equivalent surfaces.



176 4. INSTITUTE FOR EXPERIMENTAL PHYSICS II

4.3.23 Funding

Investigation of inter-sublevel transitions in self-organized quantum dots; development of
novel infrared detectors and lasers
Prof. Dr. Marius Grundmann
DFG Gr 1011/7-3

Transferability of the codoping concept to ternary ZnO:(Cd,Mg)
Prof. Dr. Marius Grundmann, Dr. H. Schmidt
DFG Gr 1011/10-1 im DFG-Schwerpunktprogramm 1136
”Substitutionseffekte in ionischen Festkörpern”

III-V-Semiconductor Nano-Heterostructures for Advanced Opto-Electronic Devices
Prof. Dr. Bernd Rheinländer
BMBF: Bilaterale Zusammenarbeit BRD-Slowakei: SVK 01/001

New gallium phosphide grown by vertical gradient freeze method for light emitting diodes
Prof. Dr. Bernd Rheinländer
(VGF GaP - LED’s) No. IST - 2001-32793
EU-FP5-Projekt und BMBF: Bilaterale Zusammenarbeit BRD-Slowakei: SVK 01/001

PLD of new dielectric and HTSC thin films for future applications in wireless and mobile
communication
Dr. Michael Lorenz
BMBF-Teilprojekt FKZ 13N8158 innerhalb BMBF-Leitprojekt ”Supraleiter und neuar-
tige Keramiken für die Kommunikationstechnik der Zukunft”, Förderschwerpunkt Supraleitung
und Tieftemperaturtechnik.

Electronic and optical properties, in-situ Raman scattering, in-situ ellipsometry and ion
beam analysis of flexible Cu-(In,Ga)-(Se,S) thin film solar cells
Prof. Dr. Marius Grundmann, Prof. Dr. Tilman Butz, Dr. Mathias Schubert
BMBF-Wachstumskern INNOCIS, Teilprojekt FKZ 03 WKI 09

Intraband and interband carrier transitions in type I and type II nanostructures with
quantum dots, quantum dot molecules and impurities
Prof. Dr. Marius Grundmann
INTAS 01-0615

One-dimensional heterostructures and nano-forests
Prof. Dr. Marius Grundmann, Dr. Michael Lorenz
DFG Gr 1011/11-1
within Forschergruppe FOR 522
Architecture of nano- and microdimensional building blocks

Lateral optical confinement of microresonators
Prof. Dr. Bernd Rheinländer, Dr. V. Gottschalch
DFG Rh 28/4-1



4.3. SEMICONDUCTOR PHYSICS 177

within Forschergruppe FOR 522
Architecture of nano- and microdimensional building blocks

Interface-related properties of oxide quantum wells
Prof. Dr. Marius Grundmann, Dr. V. Gottschalch
DFG Gr 1011/14-1
within Forschergruppe FOR 404
Oxidic interfaces

Interface-induced electro-optical properties of oxide semiconductor-ferroelectric layered
structures
Dr. Mathias Schubert, Dr. Michael Lorenz
within Forschergruppe FOR 404
Oxidic interfaces

Magnetoelectronics of ferromagnetic traps in TCO and of single spin traps in quantum
dots
Dr. Heidemarie Schmidt
BMBF FKZ 03N8708
im BMBF-Nachwuchswettbewerb ”Nanotechnologie”

4.3.24 Organizational Duties

M. Grundmann
Vertrauensdozent der Studienstiftung des deutschen Volkes
Direktor des Institut für Experimentelle Physik II
Project Reviewer: Deutsche Forschungsgemeinschaft (DFG), Alexander-von-Humboldt
Stiftung (AvH), Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen For-
schung (FNSNF), Fonds zur Förderung der Wissenschaften (FWF)
Referee: Appl. Phys. Lett., Phys. Rev. B., Phys. Rev. Lett., Electr. Lett., Physica E,
phys. stat. sol., J. Appl. Phys.

4.3.25 External Cooperations

Academic

A. F. Ioffe-Institut, St. Petersburg
Prof. Dr. Zh. I. Alferov, Dr. V. M. Ustinov, Dr. G. Cirlin

Forschungszentrum Karlsruhe, Institut für Materialforschung III
Dr. H. Heidinger, Dr. J. Halbritter
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4.4 Solid State Optics and Acoustics

4.4.1 Development of a Miniaturized Advanced Diagnostic
Technology Demonstrator
’DIAMOND’ - Technology Study Phase 2

W. Grill, R. Wannemacher, K. Desyllas

A miniaturized universal scanning microscope (’space microscope’) is being developed
for potential operation on board of the International Space Station ISS, which allows diag-
nostics of samples by means of optical scanning microscopy, partly combined with spectral
resolution, as well as by means of acoustic microscopy with vector contrast. Foreseen mi-
croscopic techniques are confocal optical microscopy in reflection, scanning microscopy in
transmission, as well as spectrally resolved fluorescence and Raman microscopy. Acoustic
microscopy permits spatially resolved determination of micromechanical sample proper-
ties.

Funded by European Space Organization ESA/ESTEC

4.4.2 Ultrasound Diagnostics of Directional Solidification

W.Grill, R. Wannemacher, S. Knauth, J. Jahny, O. Lenkeit

An ultrasonic measuring device based on guided waves has been developed in order to
determine the growth rate of alloys, in particular of opaque metallic alloys. Experimental
tests show that a high resolution is achievable in the determination of the position of the
solid-liquid interface, down to 0.01 mm. The ultrasonic technique is therefore an appro-
priate tool for the measurement of the solidification velocity for stable as well as unstable
solidification processes. The aim consists in the investigation of the impact of process pa-
rameters on the resulting material properties. Controlled non-stationary growth presently
appears to become a main research object for the next future, in particular in the context
of industrial applications. The measurement of the solidification velocity by ultrasound is
a diagnostic tool for directional solidification experiments. It was developed in the frame-
work of the Technological Research Programme of the European Space Organization. An
ultrasound pulse launched from the cold end of the sample and being reflected from the
phase boundary of solidification allows to determine the position of the solid-liquid in-
terface. Given the speed of sound in the sample the position of the phase boundary can
be determined as a function of time and, hence, the solidification velocity via precise
measurement of the propagation time by means of an autocorrelation technique.
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Funded by European Space Organization ESA/ESTEC

4.4.3 Development and verification of the applicability of ultra-
sonic methods

W. Grill, Z. Kojro

Possible applications associated with the company Schott GLAS of the ultrasound
techniques developed and published by our group are investigated. Techniques, sensors,
and measurement devices are being developed. The work is conducted in cooperation
with Schott GLAS. New techniques were developed and tested.

Funded by Schott GLAS Mainz

4.4.4 Development of ultrasonic methods, sensors and measure-
ment equipment

W. Grill, J. Jahny, O. Lenkeit

Based on techniques developed and published by us in the context of high-resolution
ultrasound spectroscopy and time-of-flight measurements dedicated ultrasonic techniques,
sensors, and devices are being developed for industrial use within the company ’Heidel-
berg’ (printing machines). Investigations of physical and technical principles and devel-
opment of appropriate models are prerequisites for the application of the techniques and
devices. The work has led to new measurement techniques.

Funded by Heidelberger Druckmaschinen AG
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4.4.5 Development and verification of the applicability of
ultrasonic methods

W. Grill, Z. Kojro

Based on techniques developed and published by us dedicated ultrasonic techniques,
sensors, and devices are being developed for use at the company PFW Technologies
GmbH. The work is conducted in cooperation with PFW Technologies GmbH. The de-
veloped techniques are a spin-off of the projects of our group financed by the European
Spcae Organization (ESA).

Funded by PFW Technologies GmbH

4.4.6 Fourier inversion of acoustic wave fields in anisotropic
solids

M. Pluta, A. G. Every, W. Grill, T. J. Kim, E. Twerdowski

This work [1] is concerned with the analysis of acoustic wave fields encountered in
phase-sensitive acoustic microscopy (PSAM) applied to elastically anisotropic solids.We
show that the fast Fourier transform technique provides a computationally efficient method
of calculating two-dimensional amplitude and phase images of these fields. More impor-
tantly, we demonstrate how this technique, applied to complex wave field data, can be
used to treat inverse problems such as source reconstruction, image quality assessment,
and the determination of elastic constants. Monochromatic and also more general time-
dependent excitations, such as tone bursts and short pulses, are treated, and the resulting
wave fields described. The evolution of these wave fields with increasing frequency is dis-
cussed, and emerging infinite frequency features, such as the ray surface and phonon
focusing caustics, are identified. A number of numerical simulations are presented that
are in good agreement with measured data from the literature. As an illustration of elas-
tic constant determination, we use the point spread function determination based on our
PSAM measurements on the longitudinal mode in silicon to determine the elastic constant
C11 of Si.

[1] M. Pluta, A. G. Every, W. Grill, T. J. Kim, Phys. Rev. B 67, 094117 (2003)
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Fig. 1: (a) Amplitude and (b) phase images of silicon, representing the spatial depen-
dence of G̃33(�x‖) in the plane x3 = 20 mm and for frequency f = 10 MHz. (d) Depicts
the 2D amplitude variation at 50 MHz and (c) and (f) the amplitude variation along the
central line in cases (a) and (d), respectively. (e) The infinite-frequency phonon focusing
pattern for Si. (g) Response in the plane x = 10mm to a 15 MHz tone burst of 8 periods
as observed after a 2.15µs delay. The reference axes are aligned along the cubic crystallo-
graphic axes, and the spatial range of the scan is 15× 15 mm2 in each case. The darkness
of the gray scale in (a) and (d) is proportional to the amplitude, in (e) to the intensity,
and in (g) to the real part of the analytical signal.
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4.4.7 Phase-sensitive acoustic imaging and micro-metrology of
polymer blend thin films

W. Ngwa, R. Wannemacher, W. Grill, T. Kundu

Scanning acoustic microscopy with vector contrast (PSAM) at 1.2 GHz is employed
for three-dimensional real-space measurements of structure in PS/PMMA (polystyrene /
poly(methyl methacrylate)) blend films, spun-cast on glass and silicon substrates. Pro-
cessing of the digitized phase and amplitude images yields information on the surface
structure and internal structure of the blend films. The complex V (z) functions render
qualitative and quantitative material contrast for each image pixel and, hence, permit the
characterization of individual domains. It is shown [1] that PSAM can provide valuable
insights regarding the polymer blend film morphology and micro-mechanical properties,
not acquirable by other ways.

Fig. 1: (140 × 32µm2) y − −z amplitude and phase images, respectively, of: (a-b) a
PS/PMMA blend film on glass substrate; (c-d) uncoated glass substrate for comparison.
The coupling fluid for the acoustic measurements is water. The frequency used is 1.2 GHz.
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Fig. 2 - PSAM complex V (z) curves from the marked spots in the y−−z images shown in
Fig. 1a. The graphs show the dependencies of the differential phase and amplitude signals
on the position of the sample along the axis of the acoustic lens for reflected ultrasonic
waves. The amplitude is normalized to the first (main) maximum. The differential phase
signal (∆φ) shown is derived from the observed and tracked phase signal by subtracting
a linear phase term 2kz, where k is the wave number of water. The linear range of the
phase useful for topographic imaging is in the vicinity of the focal plane (around z = 0).
The substrate is glass, and the coupling fluid water. The frequency is 1.2 GHz. (a-d)
correspond, respectively, to the points marked (A-D) with arrows in Fig. 1a.

[1] W. Ngwa, R. Wannemacher, W. Grill, T. Kundu, Europhys. Lett. 64, 830-836 (2003)
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4.4.8 Mode control by nanoengineering of light emitters in spher-
ical microcavities

B. Möller, M. V. Artemyev, U. Woggon, R. Wannemacher

Quantum-confined semiconductor nanorods are used as highly polarized nanoemitters
to actively control the polarization state of microcavity photons. A wet-chemical method
to tangentially align CdSe nanorods on a polymer surface is applied to a spherical R ≈ 2λ-
microcavity. The cavity emission is studied by imaging spectroscopy and polarization-
sensitive mode mapping. The efficient confinement of photons spontaneously emitted by
nanorods into single transverse electric (TE)cavity modes is achieved while transverse
magnetic modes are suppressed. A microscopic tricolor TE-emitter operating at room
temperature in the visible spectral range is demonstrated [1].

[1] B. Möller, M. V. Artemyev, U. Woggon, R. Wannemacher Mode control by
nanoengineering of light emitters in spherical microcavities Appl. Phys. Lett. 83,
2686-2688 (2003)
[2] B. Möller, M. V. Artemyev, U. Woggon, R. Wannemacher, Appl. Phys. Lett. 80,
3253 (2002)

Fig. 1: Calculated electromagnetic field intensity distribution (E2) on a sphere surface
for a microsphere with R = 1.4µm and n = 1.57. (a) TE1

16 mode with m = ±1 (λ =
688.5 nm), dipole oscillates in x-direction, (b) TM1

16 mode with m = 0 (λ = 666.9 nm),
dipole oscillates in z-direction. For comparison the corresponding picture of a whispering
gallery mode TM1

16 with m = 16 is shown in (c). The intensity is color-coded in a linear
scale.
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Fig. 2: Determination of cavity mode polarization by combining the results from polariza-
tion sensitive mode mapping (top), spatially resolved emission spectroscopy (middle) and
Mie-calculation (bottom). The Mie-scattering efficiency is fitted by using R = 1.397µm
for the sphere radius and n = 1.5663 + 0.00785µm2/λ2 + 0.000334µm4/λ4 for the refrac-
tive index. The two-dimensional 8.9µm x 8.9µm intensity scans (top) are performed at
the spectral positions indicated by arrows with a polarizer in the detection beam ensuring
polarization-sensitive detection as described in ref. [2]. T = 300 K, excitation at 488 nm.

4.4.9 Dot-in-a-dot: electronic and photonic confinement in all
three dimensions

U. Woggon, R. Wannemacher, M.V. Artemeyev, B. Möller, N. LeThomas, V. Anikeyev,
O. Schöps

We study three-dimensionally (3D)-confined photon states in a spherical microcavity
(the photonic dots) resonantly excited by photons emitted from semiconductor nanocrys-
tals (the quantum dots). Glass and polymer microspheres with sizes of R = 2 to 10λ
are characterized by spatially and temporally resolved micro-photoluminescence and the
influence of nanoemitter position and orientation is analysed. The emission spectra of
single, bulk and hollow, microspheres impregnated with CdSe quantum dots and rods are
investigated and the modification of the quantum dot radiative lifetime by the 3D-photon
confinement is discussed [1].

[1] U. Woggon, R. Wannemacher, M.V. Artemeyev, B. Möller, N. LeThomas, V. Anikeyev,
O. Schöps, Appl. Phys. B 77, 469 - 484 (2003) invited paper
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Fig. 1: Calculated electromagnetic intensity (E2) in and outside a spherical microcavity
for the case of excitation by a single dipole (d = 1 Debye, position z = 2.3µm, sphere
radius R = 2.5µm, refractive index n=1.5) with two different orientations. The dipole
emission is chosen to be resonant to the TM1

32,0-mode (λ = 621.44 nm) or to the TE1
32,1-

mode (λ = 632.83 nm), respectively. Plotted is the intensity in the xz-(a,c,e,g) and yz-
planes (b,d,f,h) for the dipole oscillating in x-direction (a-d) and for the dipole oscillating
in z-direction (e-h). Each plot represents an area of 20 mm × 20 mm. The logarithmic
intensity scale covers 60 dB. The maximum intensity (a) is normalized to 1.0. For (b) to
(h) the relative intensity maxima with respect to (a) are given.
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Fig. 2: Measured spectrum of CdSe QDs bound to the surface of aR= 1.8 µm microsphere
(λexc = 488 nm, T = 300 K, Iexc = 20 W/cm2). The mode quantum numbers are assigned
using Mie theory. The right inset shows the microscopic image of the microsphere taken
spectrally resolved at the TE1

22-resonance (unpolarized detection). The left inset shows
the polarizer orientation for which the mode mapping is performed at 572.1 nm (TM1

22),
584.1 nm (TE1

22) and 579.5 nm (background). The lower part shows the two-dimensional
intensity scans (a-c)for the spectral positions indicated by arrows.
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4.4.10 Apertureless near-field optical microscopy of
metallic nanoparticles

A. Pack, W. Grill, R. Wannemacher

Image formation in apertureless near-field optical microscopes employing evanescent-
wave excitation is studied quantitatively as a function of the polarisation and the wave-
length of the excitation. Aggregate Mie theory is used to describe the probe-sample
interactions self-consistently, including retardation. Only p-polarised excitation yields
images, which closely reproduce the sample, and the contrast is much higher in this case
than for s-polarised waves. Particular attention is paid to the case of imaging of metallic
nanoparticles, for which local and nonlocal versions of aggregate Mie theory are com-
pared. Nonlocality arises from the excitation of longitudinal bulkplasmons at the particle
surface. It is shown that this effect is essential in the imaging of such particles and implies
comparatively rapid convergence, in contrast to the local theory. The converged images
calculated within the nonlocal theory resemble the results of the local theory, when, arbi-
trarily, within the latter only dipole-dipole interactions are taken into account. Significant
qualitative and quantitative differences, however, are shown to exist. Signal and contrast
enhancements due to resonant excitation of surface plasmon polaritons are studied quan-
titatively using the results of the converged nonlocal theory [1] .

Fig. 1: Calculated apertureless near-field optical images, obtained by registering the total
extinction, or scattered power, respectively, of a cluster of three silver particles, r = 5 nm,
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in contact with each other, and forming an equilateral triangle, as indicated by the circles,
as a function of the position of a gold probe particle, r = 5 nm scanned immediately above
the silver cluster. The excitation wavelength is 460 nm. Results obtained by local (part
A) and nonlocal (part B) versions of aggregate Mie theory are compared. The maximum
multipole order allowed in the calculation is given in each case. Size of the images 50 × 50
nm. Rapid variations, within local aggregate Mie theory, with the maximum multipolar
order used in the calculation are observed, in contrast to the nonlocal theory. This is
caused by the unphysical neglection of the finite compressibility of the electron gas in the
local theory.

Fig. 2: Calculated apertureless near-field optical images of a cluster of three silver particles
as a function of the position of a gold probe particle (as in fig. 1). Shown is here the
spectral dependence of the images, with emphasis on the spectral region of the SPP
resonance of the silver particles. Images on the left (part A) represent fully converged
images calculated within the nonlocal version of aggregate Mie theory. Images on the
right (part B) were calculated within the dipolar approximation of local aggregate Mie
theory. The schematic on the top left side of the images shows again the dimensions and
positions of the silver particles relative to the scan range.

[1] A. Pack, W. Grill, R. Wannemacher, Ultramicroscopy, 94, 109-125 (2003)
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4.4.11 Polarization coupling in ZnO-BaTiO3 heterostructures

M. Schubert, N. Ashkenov, T. Hofmann, M. Lorenz, M. Grundmann

BaTiO3 (BTO) is attractive for capacitive, piezoelectric, pyroelectric and electro-optic
(EO) device applications. The electrical conductivity of the ZnO layers can be controlled
over many orders of magnitude. ZnO possesses permanent spontaneous polarization. Cal-
culations predict values similar to GaN and AlN [1],[2]. Spontaneous polarization values
of BTO thin films are within the same range. Whereas the wurtzite polarization cannot
be reversed, external electric fields can switch the polarization direction in the perovskite
structure. Coupling effects between wurtzite and perovskite polarizations are of interest
here. We report on electro-optical birefringence measurements by spectroscopic ellipsom-
etry on ZnO-BTO-ZnO heterostructures, grown by pulsed laser deposition. Hysteresis
behavior is explained by wurtzite polarization biasing the ferroelectric polarization, and
ohmic-loss-induced phase transition. Thin-film-design combining remanent perovskite
with permanent wurtzite polarization provide interesting grounds for new EO-device ap-
plications [3].
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Fig. 1: ZnO(1.8µm)/BTO/ZnO(0.4µm) heterostructure: (a) top view, (b) TEM
image and SAD pattern. (c) Ψ and ∆ spectra at U = 0, and differences δΨ and δ∆
between U = 40 V and U = 0. (d) δn versus U .

[1] F. Bernardini, V. Fiorentini, D. Vanderbilt, Phys. Rev. B 56, R10924 (1997).
[2] O. Ambacher et al., J. Appl. Phys. 87, 334 (2000).
[3] M. Schubert et al., Ann. Phys. 13, 61 - 62 (2004)

Funded by DFG under contract SCHUH 1338/4-1,2 within FOR 404 ’Oxidic Interfaces’
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4.4.12 Phonon modes of stibnite determined by generalized
infrared ellipsometry

M. Schubert, T. Hofmann, W. Dollase∗
∗ Department of Earth and Space Sciences, University of California, Los Angeles, CA
90095

Generalized ellipsometry allows complete extraction of the dielectric function tensor,
including orientation, from measurement of skew-cut single crystal orthorhombic absorb-
ing materials. As an example, Stibnite (Sb2S3) is studied to determine fundamental
phonon modes for polarization along major crystal axes a, b, and c from lineshape anal-
ysis of the major dielectric function spectra (Fig. 1) [1].
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Fig. 1: Experimental (dotted lines) and best-fit (wavenmuber-by-wavenumber multiple-
sample-, multiple-orientation analysis) calculated ellipsometry data (solid lines), obtained
from nearly a-plane, b-plane, and c-plane oriented surfaces of stibnite (Φa = 70◦). Data
shown for the b- and c-plane surfaces were acquired with the a-axis rotated ≈ 45◦ away
the laboratory x-axis. The horizontal bars indicate the spectral regions of total reflection
for p and s polarization. The labels “a”, “b”, “c” address polarizations parallel crystal
axes a, b, and c, respectively. The vertical bars denote TO and LO frequencies. The stars
indicate frequencies ωLO∗ where dielectric loss occurs for polarization along a, b, and c
[2].

[1] M. Schubert et al., Thin Solid Films, in press.
[2] M. Schubert, Infrared Ellipsometry on semiconductor layer structures Springer Tracts
in Modern Physics (Springer, Heidelberg, 2004/5)



200 4. INSTITUTE FOR EXPERIMENTAL PHYSICS II

4.4.13 Mo-Si soft x-ray mirror growth monitoring by in-situ el-
lipsometry

E. Schubert∗, H. Neumann∗, M. Schubert
∗ Wilhelm Leibnitz-Institut für Oberflächenmodifizierung Leipzig, e.V.

Fast and reliable optical in-situ process diagnostics by spectroscopic ellipsometry is
demonstrated for control of dielectric multilayer mirros for soft-x-ray applications. The
Mo/Si material system is a promising candidate for high - reflective normal incidence mul-
tilayer mirrors for soft-x-rays near λ = 13.4 nm. A series of Mo/Si multilayer samples with
a period d =68.3 was prepared on Si (100) substrates by ion-beam deposition (Fig. 1c).
The multilayer period d was monitored in-situ by visible-wavelength ellipsometry. Data
of selected ellipsometry parameters are shown in Fig. 1a. Growth initiates at the silicon
surface, and during deposition of the first 8 periods, the optical response of the substrate
can still be seen. Measurements were done at sufficient time intervals placed within each
Mo and Si sequence to ensure real-time determination of the deposition speed and the op-
tical properties (optical constants) of both bilayer constituents. These information can be
used to control the growth conditions (material stability) as well as the thickness values of
each individual sublayer. A closed-loop cycle can be placed to determine the shutter open-
ing times for each sequence to reach homogeneous thickness values over many deposition

cycles.

T
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λ = 688.9nm

λ = 688.9nm
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Mo Mo Mo Mo
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Fig. 1: (a) Time-resolved in-situ ellipsometry data (λ = 688 nm and 400 nm) of a 50-
period Mo-Si superlattice targeting a period thickness of 68.2 Å. (b) Ion-beam system for
the Mo/Si multilayer deposition. The HF ion source (I) is opposed towards a switchable
target (T). The substrate (S) can be rotated. The ellipsometer is attached to ports E. (c)
TEM high-resolution image of the resulting SL.
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4.4.14 Optical in-situ process monitoring

C. Bundesmann, N. Ashkenov, M. Schubert, G.Lippold∗
∗ Solarion GmbH, Ostende 5, 04288 Leipzig, Germany

Optical techniques, such as spectroscopic ellipsometry and Raman scattering spec-
troscopy, are non-destructive, reliable and fast, and constitute almost perfect techniques
for in-situ monitoring of thin film processes. While spectroscopic ellipsometry has been
already applied successfully to several industrial processes, Raman scattering was still
restricted to research laboratory systems. Here we report the first successful application
of a Raman head fitted to an industrial thin film process. A roll-coater (Fig. 1) was
designed to deposit the absorber layer of a CuInSe2-based solar cell structure on flexible
substrates. The performance of the absorber layer is strongly dependent on its phase
compositon. Raman scattering is a perfect tool, because both wanted (α-CuInSe2) and
unwanted phases (e.g. γ-In2Se3 and Cu2Se) produce distinct Raman or fluorescence spec-
tra. The Raman head is an in-house built high-power large-aperture head.

A

B
C

Fig. 1: Industrial roll-coater (FHR An-
lagenbau GmbH, Ottendorf-Okrilla, Ger-
many) with Raman (A) and ellipsome-
try (B/C) setup at the Solarion GmbH
Leipzig, Germany.

Fig. 2: Typical in-situ Raman spectra of different phases, which occur during the de-
position of Cu-In-Se at different growth paramaters. Left panel : Raman spectra of γ-
In2Se3 (top spectra), α-CuInSe2 (bottom) and a mixture of both phases. Right panel :
The high-temperature phase of Cu2Se has no Raman active mode, but produces a strong
fluorescence signal. The spectra were recorded with the Raman setup shown in Fig. 1 (A).
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4.4.15 Phonon modes of cubic Mg-rich MgxZn1−xO thin films

C. Bundesmann, M. Schubert

Research interest is focussed on wide-band gap properties of ZnO-related compounds,
such as MgZnO, which are interesting for short wavelength emitter end detector struc-
tures. In our group infrared spectroscopic ellipsometry (IRSE) and Raman scattering
spectroscopy is applied to study phonon mode and free charge carrier parameters of in-
organic and organic semiconductors, one example is presented here. Recent work was
concerned with the infrared dielectric functions and phonon mode properties of hexago-
nal MgxZn1−xO thin films with x ≤ 0.52.[1,2] Now cubic Mg-rich MgxZn1−xO thin films
with x ≥ 0.67 were studied. The samples were supplied by M. Lorenz of the Semiconduc-
tor Physics Group.
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Fig. 1: Left panel: Experimental (dotted lines) and best-fit calculated (solid lines) IRSE
Ψ-spectra of MgxZn1−xO thin films with x = 0.69, 0.82, 0.88 and 1, and a c-plane sapphire
substrate. The angle of incidence is 50◦. Spectra are shifted for clarity. The vertical bars
indicate the frequencies of the TO and LO phonon modes obtained from best-fit model
analysis. Right panel: Best-fit model dielectric function parameters of the MgxZn1−xO
thin films in dependence on the Mg content x. The dashed lines are linear interpolations
between the corresponding values of the binary compounds ZnO and MgO.

The infrared model dielectric function parameters of the MgxZn1−xO thin films will
become useful for future free charge carrier studies of MgxZn1−xO based heterostructures.

[1] C. Bundesmann et. al, Appl. Phys. Lett. 81, 2376 (2002).
[2] R. Schmidt et. al, Proceedings of 26th ICPS, Edinburgh, UK, 2002.
[3] C. Bundesmann et. al, Appl. Phys. Lett. (2004) submitted.
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4.4.16 Free-charge-carrier properties in AlGaAs/GaAs super-
lattices investigated by magnetooptic ellipsometry

T. Hofmann, C. von Middendorff, G. Leibiger∗, V. Gottschalch∗, and M. Schubert
∗Department of Inorganic Chemistry, Semiconductor Chemistry Group, University Leipzig

Far-infrared magnetooptic ellipsometry is employed to determine the electron effec-
tive mass, the mobility and concentration in Si-doped AlGaAs/GaAs-superlattices at
temperatures ranging from 10 to 290 K. The free-charge-carriers are trapped in the GaAs
quantum wells, which is clearly indicated by the Fano surface polariton resonance in the
vicinity of the GaAs-like longitudinal optical (LO) frequency (280 cm−1). The second Fano
resonance (295 cm−1) is due to the undoped GaAs buffer layer on top of the Te-doped
n-type GaAs substrate. We observe a directional dependence of the free-charge-carrier
mobility at low temperatures. As expected for a system of reduced dimensionality the
in-plane mobility (µ‖ = 1707 cm2/Vs) is much larger than its out-of-plane component
(µ⊥ = 1111 cm2/Vs) at 10 K. All parameters are determined by modelling the observed
magnetooptic birefringence originating from the far-infrared free-charge-carrier excitations
in the AlGaAs/GaAs-heterojunctions without any need for additional electrical measure-
ments.
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Fig. 1: (a) Experimental (dotted lines) and best-fit calculation (solid lines) Mueller
matrix data. The GaAs-like and AlAs-like phonon (TO, LO) modes of the AlGaAs layers
are indicated by solid and dashed vertical lines, respectively. The GaAs phonon (TO,
LO) modes of the substrate, buffer, and superlattice layers are marked accordingly. The
resonantly excited s- (SGW) and p-polarized transverse interface polaritons (FSP) are
indicated by vertical arrows and dotted lines. (b) Experimental (dotted lines) and best-
fit calculation of (solid lines) Mueller matrix element differences between those obtained

at µ0| �H| = −3.00(0.02), and +3.00(0.02)T. Clearly the strongest magnetooptical effects
occur in the vicinity of the SGW mode resonances. The data shown in (a) and (b) were
obtained at 10 K sample temperature at an angle-of-incidence of Φa = 45◦.
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4.4.17 Strong increase of the electron effective mass in GaAs
incorporating boron and indium

T. Hofmann, G. Leibiger∗, N. Ashkenov, V. Gottschlach∗, and M. Schubert
∗Department of Inorganic Chemistry, Semiconductor Chemistry Group, University Leipzig

The strain-free boron- and indium-containing GaAs compounds are promising candi-
dates for novel group-III group-V semiconductor solar cell absorber materials with lattice
match to GaAs, for which experimental data of the electronic band structure are widely
unknown. For non-degenerate, silicon-doped, n-type B0.03In0.06Ga0.91As with band gap en-
ergy of 1.36 eV, determined by near-infrared ellipsometry, a strong increase of the electron
effective mass of 44% in B0.03In0.06Ga0.91As (m∗ = 0.093 me) compared to In0.06Ga0.94As
(m∗ = 0.067 me) is obtained from far-infrared magnetooptic generalized ellipsometry stud-
ies. We thereby obtain the vibrational lattice mode behavior. For BAs, an experimentally
obscure compound, the curvature of the same conduction band extrapolates to the free
electron mass.
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Fig. 1: (a) Experimental (dotted lines) and best-fit calculation (solid lines) ellipsom-
etry data at Φa = 45◦. Trivial elements M13, M22, M31, M23, and M32 are omitted. The
GaAs-like phonon (TO, LO), and phonon-plasmon (LPP+) modes are indicated by solid,
dashed, and dotted vertical lines, respectively. Two additional modes are attributed to
InAs- and Si-like sublattice modes denoted by AMIn and AMSi, respectively. The sample
response is further affected by excitation of s- (SGW) and p-polarized transverse interface
polaritons (FSP). (b) Experimental (dotted lines) and best-fit calculation of (solid lines)

Mueller matrix element differences between those obtained at µ0| �H| = −3.00(0.02), and
+3.00(0.02)T, obtained by magnetooptic generalized ellipsometry at Φa = 45◦.

[1] T. Hofmann, G. Leibiger, N. Ashkenov, V. Gottschlach, M. Schubert, Phys. Rev. Lett. (sub-
mitted)
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4.5 Superconductivity and Magnetism

4.5.1 Introduction

Research into the basic properties of ferromagnetic and superconducting materials has
a long-standing tradition. The present focus of the Division of Superconductivity and
Magnetism is on two branches of contemporary magnetism: (1) magnetic phenomena in
carbon-based materials and (2) oxide spin-electronics.

Research highlight in the year 2003 was the discovery of ferromagnetism in proton-
irradiated graphite, see P. Esquinazi et al., Phys. Rev. Lett. 91, 227201 (2003). Here the
intensive cooperation between our group and the Division of Nuclear Solid State Physics
lead to the observation of a clear ferromagnetic signature in irradiated highly oriented
pyrolytic graphite (HOPG). This opens up a wide spectrum of further research into the
magnetic and magnetotransport properties of graphite micro- and nanostructures.

In the field of oxide spin-electronics it has been a successful year with the extension of the
Forschergruppe 404 ’Oxidische Grenzflächen (Oxide Interfaces)’ and the continuation of
our project on the magnetotransport properties of magnetic oxide heterostructures. Fu-
ture aims of this project are the study of magnetic oxide nanocontacts and the fabrication
of spin-transistors.

4.5.2 Ferromagnetism in proton irradiated highly oriented
graphite

Ferromagnetic Spots in Graphite Produced by Proton Irradiation

K.-H. Han1, D. Spemann2, P. Esquinazi1, R. Höhne1, A. Setzer1, V. Riede3 and T. Butz2

1 Superconductivity and Magnetism
2 Nuclear Solid State Physics
3 Solid-State Optics and Acoustics

The recently discovered ferromagnetic signals in pure graphite [1,2] and in polymerized
fullerenes [3] are received mainly with a mixture of surprise and scepticism by most of
the scientific community. The aim of our investigation was to use samples with a very
low impurity content, to measure precisely the ferromagnetic metal content and possibly
to increase the intrinsic ferromagnetism. Without a sensitive and reliable method for this
characterization it would not be possible to continue the research in this topic, since in
several samples the measured magnetization is not much larger than the magnetization
we would expect from the incorporated magnetic impurities. The basic idea was to use
proton irradiation simultaneously for element analysis by “Particle Induced X-ray Emis-
sion” (PIXE) and – possibly – for the creation of magnetic domains. In the first step
of our study [4] clean surfaces of a HOPG sample (Fe content < 0.3 ppm, rocking-curve
width = 0.4◦) were irradiated by 2.25 MeV protons using a microbeam applied parallel
to the c-axis. Beam diameters between 1 and 2 µm, separated by 20 µm , and at different
fluences and doses were chosen. The total deposited electric charge (areal) density was
between 0.05 and 50 nCµm−2.
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Fig. 1: (a) Topography (top)
and MFM (bottom) images of
a spot and its surroundings ir-
radiated with a fluence of 0.2
nC/µm2. The scan area was
20 × 20 µm2. Horizontal black
lines across the spot produce
the line scans in (b) of topog-
raphy (top) and MFM (bot-
tom) images at different scan
heights. The swelling height
is ∼ 5 nm and is independent
of the scan height. The mag-
netic image, however, shows a
decrease of the phase shift from
3◦ to ∼ 0.2◦ after increasing
the scan height from 50 nm to
200 nm.

The irradiated areas and surroundings were characterized simultaneously by atomic force
(AFM) and magnetic force microscopy (MFM) at room temperature (see Fig. 1). The
measured MFM phase shift is proportional to the magnetic force gradient and a measure
for the ferro- or ferrimagnetic behaviour of the sample. For virgin graphite samples, even
though the changes in topography are significant, one obtains in general a MFM signal
with a phase shift of the order of ±0.1◦, which corresponds to the noise of the microscope.
The spot regions are clearly visible in the MFM signal and topography. The irradiation
produces a clear swelling at the graphite surface with a height that increases with irradia-
tion dose. It is important to note, however, that there is no clear correlation between the
increase in swelling height measured by AFM and the maximum MFM phase shift change
at the spot within the dose range used. Moreover, it was found that the magnetic phase
shift changes sharply at the “borders” of the spot and that the magnetic force gradients
measured within the area of the spots at low doses appear to be more homogeneous than
that at higher doses. This behaviour rules out that topography-related spurious effects
can be responsible for the MFM signals. The changes of the MFM images at the spot and
in its surroundings after the application of a magnetic field also indicate that the observed
magnetic contrast is not an artifact but is in favour of an intrinsic magnetic effect at the
spots.
To measure the degree of disorder of the sample, Raman spectroscopy was performed. All
unirradiated areas show only one pronounced peak at 1580 cm−1 (the E2g2 mode) as ex-
pected for graphite without disorder. All irradiated spots show additionally the disorder
mode D at 1360 cm−1.
The results demonstrate intrinsic room temperature ferromagnetism in metallic-ion-free
graphite and can open the possibility of magnetically writing on carbon surfaces.

[1] Y. Kopelevich, P. Esquinazi, J. H. S. Torres and S. Moehlecke, J. Low Temp. Phys.
119, 691 (2000).
[2] P. Esquinazi, A. Setzer, R. Höhne, C. Semmelhack, Y. Kopelevich, D. Spemann, T.
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Butz, B. Kohlstrunk and M. Lösche, Phys. Rev. B 66, 024429 (2002).
[3] T. Makarova, B. Sundqvist, R. Höhne, P. Esquinazi, Y. Kopelevich, P. Scharff, V. A.
Davydov, L. S. Kashevarova and A. V Rakhmanina, Nature 413, 716 (2001).
[4] K.-H. Han, D. Spemann, P. Esquinazi, R. Höhne, V. Riede and T. Butz, Adv. Mater.
15, 1719 (2003).

Magnetic carbon: an explicit evidence for ferromagnetism induced by proton
irradiation

P. Esquinazi1, R. Höhne1, K.-H. Han1, A. Setzer1, D. Spemann2 and T. Butz2

1 Superconductivity and Magnetism
2 Nuclear Solid State Physics

In the next step of our studies [1] we wanted to create large irradiated areas and a large
number of spots on proton irradiated HOPG to obtain enough ferromagnetic material to
reach the sensitivity range of a commercial SQUID magnetometer and so to confirm the
existence of magnetic domains by a completely other measuring method.
Samples of dimension 2 × 2 × 0.1 mm3 were used. Four irradiations were consecutively
applied to sample 1 with total charges of 2.93 µC (No.1), 8 µC (No.2), 600 µC (No.3) and
again 600 µC (No.4). Rutherford backscattering spectroscopy (RBS) and PIXE spectra
were recorded simultaneously with the irradiation allowing us to check the purity of the
sample at the different irradiation stages. The magnetic characterization before and after
each step of irradiation was performed by SQUID measurements and MFM/AFM.
In the figure the magnetic moment measured at T = 300 K as a function of magnetic field
is shown for sample 1 glued on a silicon substrate, after various proton irradiations. In
(a) the total measured magnetic moment after irradiation No. 1 is shown, which is similar
to that of the virgin sample within the scale of the figure. The main part (∼ 90%) of the
diamagnetic signal is due to the Si substrate. In the same figure we show the magnetic
moment of the same sample after irradiation No. 3 where we can clearly recognize the
s-shaped curve without any background subtraction. After subtraction of the magnetic
moment of the substrate and graphite we obtain the results depicted in (b). A clear in-
crease of the ferromagnetic loop in irradiation stages No. 2 and No. 3 and some decrease
after irradiation No. 4 is observed.
The observed changes of the magnetic moment after the different irradiation stages are
due to the irradiation and not to different misalignments of the sample position with
respect to the applied field. To check this we measured sample 1 in the irradiation stages
No. 3 and No. 4 for the other field direction (parallel to the c axis of graphite). After sub-
traction of the diamagnetic signal from graphite and Si substrate, the magnetic moment
loops were similar as for the other field direction; this is an indication for a low anisotropy
of the magnetism produced by the irradiation.
To check the reproducibility of our procedure as well as to rule out possible contamination
during the handling of the sample, a new piece of the virgin HOPG sample was prepared
in a similar way and fixed to a different Si substrate. Very good reproducibility was
achieved in sample 2 for similar implanted charges. An increase of ferromagnetism was
recently found in proton irradiated amorphous carbon films either [2].
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Just after each irradiation the MFM
and topography images were measured.
The results confirm the SQUID mea-
surements and the results found on pro-
ton irradiated microspots. The overall
results indicate that room-temperature
ferromagnetism in carbon-based struc-
tures containing only p- and s-electrons
is a reality. The origin of the ferromag-
netism in carbon is not yet well estab-
lished. We speculate that the origin of
the observed effect is that proton bom-
bardment and implantation may pro-
mote the formation of sp3 carbon creat-
ing a three-dimensional network of sp2

and sp3, mono- and dehydrogenated,
carbon atoms. The role of hydrogen to
produce magnetic moments and sponta-
neous magnetization in graphite has re-
cently been treated theoretically in the
literature [3].
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[1] P. Esquinazi, D. Spemann, R. Höhne, A. Setzer, K.-H. Han and T. Butz, Phys. Rev.
Lett. 91, 227201 (2003).
[2] R. Höhne, P. Esquinazi, K.-H. Han, D. Spemann, A. Setzer, U. Schaufuß, V. Riede,
T. Butz P. Streubel and R. Hesse, Proceedings of the SMM16, 2003, to be published.
[3] K. Kusakabe and M. Maruyama, Phys. Rev. B 67, 092406 (2003).

4.5.3 Creation and study of ferromagnetic states in fullerenes

Observation of intrinsic magnetic domains in C60 Polymer

K.-H. Han1, D. Spemann2, R. Höhne1, A. Setzer1, T. L. Makarova3, P. Esquinazi1 and T.
Butz2

1 Superconductivity and Magnetism, Leipzig
2 Nuclear Solid State Physics, Leipzig
3 Department of Experimental Physics, Umea University, Sweden

Our work was motivated by the recent discovery of ferromagnetic behaviour in two-
dimensional polymerized highly-oriented rhombohedral C60 phase as well as in oriented
graphite samples with Curie temperature of 500 K or above. Two questions were to be
answered: do magnetic domains in a polymerized structure made solely by carbon exist
and are they correlated to some structural defects or magnetically impure regions?
An undoped polymerized C60 sample has been characterized for the first time with respect
to impurity content and ferromagnetic properties by laterally resolved PIXE, MFM and
SQUID measurements [1]. The combination of these techniques unambiguously estab-
lishes the origin of the measured magnetic moment, the MFM image contrast and the
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correlation with local topography, micro-magnetic structure and magnetic impurities.
For the sample studied, the average Fe concentration was (175 ± 16) µg/g, which, if all
Fe behaves ferromagnetically (an unrealistic assumption), would give a saturation mag-
netic moment per unit mass which is three times less than the magnetization measured
in our experiments by the SQUID. This excludes the possibility that the effect is due to
ferromagnetic clusters formed by magnetic Fe.
From PIXE, we select two different regions for MFM measurement, a Fe-contaminated
and a pure region. In the contaminated region, we found magnetic signals, which are
correlated to the magnetic impurity grains. In pure regions (concentration of magnetic
impurities < 1 µg/g), we found three different magnetic images. In region A, stripe do-
mains are observed and the direction of domain magnetization appears to be oblique to
the sample surface. In region B corrugated domain patterns are observed with the do-
main magnetization oriented approximately normal to the sample surface. In region C,
however, we could not resolve any magnetic domains. The total size of the magnetic area
(regions A and B) is ∼ 30% of the pure sample area. In the figure the topographic (a)
and magnetic force gradient (b) images taken from the pure region A are shown. Here
the scan area was 10 × 10 µm and scan height 100 nm for the MFM image.
All of these results reveal that C60 polymer is a mixture of magnetic and non-magnetic
parts and only part of the sample contributes to the ferromagnetism.

[1] K.-H. Han, D. Spemann, R. Höhne, A. Setzer, T. L. Makarova, P. Esquinazi and T.
Butz, Carbon 41, 785 (2003).

Magnetism in photo-polymerized fullerenes

T. L. Makarova1, K.-H. Han2, P. Esquinazi2, R. R. da Silva3, Y. Kopelevich3, I. B.
Zakharova4 and B. Sundqvist1

1 Department of Experimental Physics, Umea University, Sweden
2 Superconductivity and Magnetism, Leipzig
3 Instituto de F́ısica, Universidade Estadual de Campinas, Brazil
4 Ioffe Physico-Technical Institute, St. Petersburg, Russia

The aim of the study was to obtain a ferromagnetic phase in fullerenes which are poly-
merized by another method than by pressure.
Bulk C60 was polymerized by photoirradiation, whereas C60 films were exposed to laser-
and electron-beams [1]. It was found that these treatments lead to the appearance of
weak but measurable magnetic features. Nonlinear magnetization measured by SQUID
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is observed only for samples irradiated in the presence of oxygen, while, in the case of
pressure-polymerized C60, oxygen adversely affects the magnetic properties. This could
be explained by the assumption that under exposure to light, oxygen or hydrogen reacts
with fullerene, producing localized spins. Magnetic force microscopy clearly shows that
the laser irradiation process is followed by changes in magnetic images and topography.
Laser and electron illumination enhances the roughness of the films, producing clusters.
Magnetic images appear for all exposed areas. These magnetic images are highly corre-
lated with the topographic images. The size of the topographic clusters depends on the
laser and electron beam energy. The MFM images change with the direction of the mag-
netic field applied on the samples before MFM measurements indicating that they have
a ferromagnetic origin. Using the same procedure for a non-exposed area no significant
difference in the MFM signals was observed.

[1] T. Makarova, K.-H. Han, P. Esquinazi, R. R. da Silva, Y. Kopelevich, I. B. Zakharova
and B. Sundqvist, Carbon 41, 1575 (2003).

4.5.4 Transport- and magnetotransport properties of graphite:
graphite as a highly correlated electron liquid

Y. Kopelevich1, P. Esquinazi2, J. H. S. Torres1, R. da Silva1 and H. Kempa2

1 Instituto de F́ısica, Universidade Estadual de Campinas, Brazil
2 Superconductivity and Magnetism, Leipzig

Although a considerable amount of research work has been done on graphite, its physical
properties are still not well understood.
The aim of our work was to study the influence of the magnetic field and its direction on
the electronic conduction processes in different graphite samples and to demonstrate the
two-dimensionality of the electron system in ideal graphite samples. The understanding of
the transport properties in graphite is of primary interest and can provide a fundamental
contribution to the physics of two-dimensional (2D) systems in general.
We have performed measurements of both basal-plane Rb(H,T ) and Hall Rh(H,T ) re-
sistances, both as a function of temperature T and magnetic field H, on several well-
characterized quasi-2D highly oriented pyrolitic graphite (HOPG) and, less anisotropic,
flakes of single crystalline Kish graphite. Four HOPG samples and two Kish graphite
single crystals have been studied. Low-frequency (f = 1 Hz) and dc standard four-probe
magnetoresistance measurements were performed in the temperature interval 100 mK
≤ T ≤ 300 K using different 9 T-magnet He-cryostats and a dilution refrigerator. The
Hall resistance was measured using the van der Pauw configuration with a cyclic trans-
position of current and voltage leads at fixed applied field polarity, as well as magnetic
field reversal; no difference in Rh(H,T ) obtained with these two methods was found. All
resistance measurements were performed in the Ohmic regime and at various angles be-
tween applied magnetic field and the sample c-axis.
The basic results can be summarized as follows. The recently reported [1] metal-insulator
transition (MIT) driven by a magnetic field applied perpendicular to the basal planes
of graphite appears both in the in-plane and out-of-plane resistivity. It could be shown
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that the MIT in HOPG is triggered only by magnetic fields perpendicular to the graphite
layers. A clear experimental evidence was given that the MIT is absent in highly oriented
graphite samples for fields applied parallel to the graphite samples [2]. Therefore, it is
unlikely that spin effects play a significant role in the MIT. The transport perpendicu-
lar to the graphite layers in highly oriented and less disordered samples appears to be
incoherent, demonstrating the quasi-2D character of the electron system of graphite, see
Fig. 1. Sample defects lead to a better coupling between the layers, a 3D-like behaviour
and coherent interlayer transport. The experimental results suggest that the low field
(∼ 1 kOe) metal-insulator transition is associated with the transition between Bose metal
and excitonic insulator states. On the other hand, the reentrant insulator-metal transition
which takes place at higher fields can consistently be understood assuming the occurrence
of superconducting correlations caused by the Landau level quantization. We argue that
the quantum Hall effect, observed only for strongly anisotropic quasi-2D graphite sam-
ples, and superconducting correlations may represent the same phenomenon, implying
that Cooper pairs in the quasi-2D samples form a highly correlated boson liquid [3].

[1] H. Kempa, Y. Kopelevich, F. Mrowka, A. Setzer, J. H. S. Torres, R. Höhne and P.
Esquinazi, Solid State Commun. 115, 539 (2000)
[2] H. Kempa, H.-C. Semmelhack, Y. Kopelevich and P. Esquinazi, Solid State Commun.
125, 1 (2003)
[3] Y. Kopelevich, P. Esquinazi, J. H. S. Torres, R. da Silva and H. Kempa, Adv. Solid
State Phys. 43, 207 (2003)
[4] Y. Kopelevich, J. H. S. Torres, R. R. da Silva, F. Mrowka, H. Kempa and P. Esquinazi,
Phys. Rev. Lett. 90, 156402 (2003)

Fig. 1: (Left) Angle dependence around 90◦ of the c-axis resistivity of: (a) a Kish graphite
sample with FWHM = 1.6◦, (b) a HOPG sample with FWHM = 0.40◦, and (c) a HOPG
sample with FWHM = 0.24◦ measured at B = 9 T and at 2 K. Θ = 90◦ means that
the field is applied parallel to the graphene planes. (Right) Angle dependence of the
normalized c-axis resistance in a field of 5 T and a temperature of 2 K for the same
samples as in the left figure [3].
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4.5.5 Influence of thickness on microstructural and magnetic
properties in magnetite thin films produced by PLD

A. Bollero, M. Ziese, R. Höhne, H.-C. Semmelhack, U. Köhler, A. Setzer and P. Esquinazi

The pulsed laser deposition technique (PLD) is an effective method to produce high-
quality magnetite (Fe3O4) films [1]. MgO is commonly used as a substrate because of the
small lattice mismatch between them of 0.3%, which allows pseudomorphic growth. The
lattice constant of MgO (a=4.212 Å) is about half that of Fe3O4 (a=8.3987 Å) resulting
in the appearance of stacking defects in the cation sublattices during growth as a conse-
quence of the existing shift between neighbouring Fe3O4 islands [2]. These stacking defects
are known as anti-phase domain boundaries (APBs) and have important consequences on
the magnetic properties, resistivity and magneto-transport properties. MgAl2O4 has a
lattice constant (a=8.080 Å) very close to that of Fe3O4 and the misfit between both is
of about 4%; both of them exhibit spinel-type structure but APBs have been observed
[3]. This could be explained on the basis that the cation interaction across the interface
does not play any role for epitaxy in this case, with the continuation of the oxygen sublat-
tice being the only restriction [4]. A systematic study of the evolution of the remanence
and the coercivity, in dependence on the measuring temperature, for two films of 26 and
320 nm grown on MgAl2O4 (100) substrates [5], has shown remarkable differences which
are explained in terms of: (i) decreased effect of the interfacial strain with increasing the
thickness (relaxation of the film); and (ii) enlarged grains with increasing the thickness,
i.e. the deposition time, and lower density of APBs which act as pinning centers for
magnetic domain walls in the case of the thicker film.

Fig. 1: Dependence of the magnetic properties on temperature for (a) 26 nm and (b)
320 nm thick Fe3O4 films grown on MgAl2O4 (100) substrates.

[1] C.A. Kleint, H.C. Semmelhack, M. Lorentz and M.K. Krause, J. Magn. Magn. Mater.
140, 725 (1995).
[2] D.T. Margulies, F.T. Parker, M.L. Rudee, F.E. Spada, J.N. Chapman, P.R. Aitchison
and A.E. Berkowitz, Phys. Rev. Lett. 79, 5162 (1997).
[3] C.A. Kleint, M.K. Krause, R. Höhne, M. Lorentz, H.C. Semmelhack, A. Schneider, D.
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Hesse, H. Sieber, J. Taubert and W. Andrä, J. Phys IV France 7, C1-593 (1997).
[4] W. Eerenstein, L. Kalev, L. Niesen, T.T.M. Palstra and T. Hibma, J. Magn. Magn.
Mater. 258, 73 (2003).
[5] A. Bollero, M. Ziese, R. Höhne, C. Semmelhack, U. Köhler, A. Setzer and P. Esquinazi,
to be submitted.

4.5.6 Spin injection at the Ni/GaAs interface

M. Ziese1, H. von Wenckstern2, R. Pickenhain2, S. Weinhold2, G. Biehne2, V. Gottschalch3,
M. Grundmann2 and P. Esquinazi1
1 Superconductivity and Magnetism
2 Semiconductor Physics
3 Institute for Anorganic Chemistry, University of Leipzig

In the development of spin-electronic devices a high efficiency for spin-injection is of
paramount importance. Here Schottky barriers might play a role, since these lead to an
enhanced injection efficiency in comparison to ohmic metal-semiconductor contacts. It
was predicted that the spin-polarization P of a metallic ferromagnet in a ferromagnet-
semiconductor junction can be extracted from the analysis of the magnetic field induced
variations in the Schottky barrier I-V characteristics [1]:

I = I0 exp
(

PµBB
kBT

) [
exp

(
eV

kBT

)
− 1

]
.

Here B denotes the magnetic field, µB the Bohr magneton, I the current and V the
applied voltage.
High quality Au/GaAs and Ni/GaAs Schottky barriers were prepared by the Semiconduc-
tor Physics Group and measurements of the Schottky characteristics in the temperature
range 5 K – 300 K in magnetic field up to 9 T were performed in the Division of Super-
conductivity and Magnetism. The GaAs has a doping density of 4 × 1016 cm−3. Small
magnetic field dependent shifts of the Schottky barrier were observed for both junction
types. The predicted magnetic field dependence could not be confirmed. Further work to
understand the magnetic field induced features is in progress.

[1] J. Gregg in “Spin-Electronics”, edited by M. Ziese and M. J. Thornton, Springer
Verlag, Heidelberg, 2001, p. 24.
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4.5.7 Magnetotransport properties of magnetite/Nb:SrTiO3

interfaces

U. Köhler, M. Ziese, A. Bollero, R. Höhne, H.-C. Semmelhack and P. Esquinazi

For the development of the field of spin-electronics magnetic oxides might play a cen-
tral role, since some ferromagnetic and ferrimagnetic oxides have spin-polarizations at
the Fermi level approaching 100%. Magnetite (Fe3O4) is a ferrimagnet with a high Curie
temperature of 860 K and, according to band-structure calculations, a spin-polarization
of −100% [1]. In heterostructures the electronic properties at interfaces are of ma-
jor importance and in this work we have studied the magnetotransport properties of
magnetite/Nb:SrTiO3 interfaces. SrTiO3 was chosen, since it has a cubic crystal struc-
ture with not too large a lattice mismatch to Fe3O4 and since its electronic properties can
be tuned from insulating to metallic by Nb-doping.
Magnetite films were deposited by pulsed laser deposition on Nb(0.1%):SrTiO3 (001) sub-
strates. Current-voltage characteristics and magnetoresistance were measured in a four-
point configuration with the current perpendicular to the interface in the temperature
range 60 K-300 K in magnetic fields up to 8 T. Current-voltage characteristics are shown
in the figure below. On cooling through the Verwey transition the curves clearly change
from being nearly linear to a strong asymmetric nonlinearity, which is reminiscent of a
Schottky barrier. These characteristics have been analyzed within a model of thermionic
emission and below the Verwey temperature ideality factors approaching unity and a bar-
rier height of about 0.15 eV have been obtained. The magnetoresistance depends in a
nonlinear fashion on the bias current. This proves that the magnetoresistance is domi-
nated by the interface. The analysis using the model of the previous section leads to an
estimate of the spin-polarization of about −66% at 100 K [2]. In view of the predicted
half-metallic band structure this is a reasonable value.
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[1] A. Yanase and N. Hamada, J. Phys. Soc. Japan 68, 1607 (1999).
[2] U. Köhler, M. Ziese, A. Bollero, R. Höhne and P. Esquinazi, Proceedings of ICM’2003,
in press.
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4.5.8 Step-edge magnetoresistance in magnetite films

M. Ziese, R. Höhne, H.-C. Semmelhack, K.-H. Han, K. Zimmer and P. Esquinazi

In recent years the extrinsic magneto-
transport properties of magnetic oxides
have been intensely studied [1]. These
effects arise from a variety of sources,
especially from spin-polarized tunneling
in heterostructures or at naturally grown
oxide barriers. Since the extrinsic mag-
netoresistance is often much larger than
the intrinsic one, especially in the low
field regime, it was hoped to exploit
these effects for potential applications.

Fig. 1: AFM image and cross section of a
magnetite film with step edges.

Up to now there has been promising progress
in the investigation of extrinsic magnetore-
sistance in manganites (e.g. La0.7Sr0.3MnO3)
and CrO2. The room temperature magne-
toresistance in these compounds, however, is
limited due to the comparatively low Curie
temperatures.

In this work we have studied grain bound-
aries artificially introduced into magnetite
films by growth on substrates with step-
edges. Fe3O4 has a rather high Curie
temperature of 860 K. The step-edges
indeed lead to an increase of the magne-
toresistance. This effect, however, occurs
mainly at high magnetic fields and cannot
be attributed to spin-polarized tunneling.
Extensive modelling lead to the conclusion
that the relevant source for the enhanced
magnetoresistance is spin-dependent scat-
tering at spin disorder near the step edges
[2].
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[1] M. Ziese, Rep. Prog. Phys. 65, 143-249 (2002).
[2] M. Ziese, R. Höhne, H.-C. Semmelhack, K. H. Han, P. Esquinazi and K. Zimmer, to
be published in J. Magn. Magn. Mater.
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4.5.9 Scaling of the extraordinary Hall effect in manganite films

M. Ziese

The Hall effect in ferromagnetic systems with a strong Hund’s rule coupling has attracted
considerable interest in recent years. In contrast to itinerant ferromagnets, where the
extraordinary Hall effect can be understood within the classical “skew-scattering” and
“side-jump” models, there have been conjectures that in systems such as the manganites
a new mechanism might be active [1,2]. This arises from a quantal phase which an elec-
tron acquires during movement through non-trivial spin-textures in analogy to the Hall
effect in hopping systems that is due to the Aharonov-Bohm effect in a triad of sites. In
[2] it was predicted that the Hall resistivity of the manganites obeys the following scaling
relation as a function of the reduced magnetization m = MS/MS(0):

ρxy = −ρ0
xy m [(1 −m2)2/(1 +m2)2] .

The Hall effect, magnetization and magnetoresistance of epitaxial La0.7Ca0.3MnO3 and
La0.7Ba0.3MnO3 films were measured in the temperature range from 10 K to 350 K in
magnetic fields up to 1 T. The films were fabricated by pulsed laser deposition on LaAlO3

(001) substrates. The scaling of the Hall effect was probed by plotting the Hall resistivity
versus the magnetization using the magnetic induction as parameter. It is clearly evident
from the figure that scaling is absent in these films. However, the scaling relation pro-
posed is an envelope to the data. This can be understood within the classical “side-jump”
model for a double exchange system and the scaling relation above can be deduced [3]
from the classical model of Searle and Wang [4].
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Institute for Theoretical Physics

5.1 Introduction

The aim of the research at the Institute for Theoretical Physics (ITP) is to explore the
theoretical and mathematical fundamentals of physics. The key areas of research are
the theory of elementary particles and the theory of condensed matter, which fruitfully
complement each other. Fundamental problems of the structure of space, time and matter
(from the smallest conceivable unit of length up to cosmic dimensions) are examined and
practical problems of complex physical systems with mesoscopic dimensions are tackled.

The institute consists of the following research groups:

• Quantum Field Theory (QFT) – fundamental problems of mathematical physics,
general structure of gauge theories, primary and effective interactions of elementary
particles.

• Particle Physics Group (TET) – quantum field theory of elementary particles,
supersymmetrical theories, quantum chromodynamics, lattice gauge theory.

• Theory of Condensed Matter (TKM) – noise-induced phenomena, structure
formation in liquid crystals, non-linear dynamics in biological models, immune sys-
tem, strongly coupled electron systems.

• Computer-Oriented Quantum Field Theory (CQT) – computer simulations
of phase transitions and critical phenomena, physics of soft matter and disordered
systems, quantum magnets.

• Molecule Dynamics/Computer Simulation (MDC) – computer simulations of
molecules at interfaces, computations of structural data, studies of thermodynamic
parameters and transport coefficients.

• Statistical Physics (STP) – interacting many-particle systems, statistical and
quantum-field theoretical methods.

In the respective subsections, for each group a short overview of the research profile is
followed by extended abstracts describing their most relevant current projects. Added is a
subsection devoted to the Graduate Studies Programme ’Quantum Field Theory’, which
plays an important integrating role not only within the ITP, but also for the scientific
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interaction with the Department of Mathematics and Computer Sciences and the Max-
Planck Institute for Mathematics in the Sciences (MIS). In addition the research groups
of the ITP take part in many of the interdisciplinary research projects of the Centre for
Theoretical Sciences (NTZ) which is part of the Centre of Advanced Studies (ZHS) of
the University of Leipzig. The publications of members of the ITP of the year 2003 and
organizational activities of ITP members are also listed at the level of each group .

K. Sibold

March 2003
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5.2 Quantum Field Theory

5.2.1 Quantum Field Theory under the Influence of External
Conditions

M. Bordag, D.V. Vassilevich, I. Drosdow

The vacuum of quantum fields shows a response to changes in external conditions with
measurable consequences. The investigation of vacuum corrections to string like configu-
rations had been investigated in two examples. In [1] the fluctuations of the gluon field
have been calculated for a color magnetic flux tube as a contribution to the investigation
of a candidate for a stable vacuum state. It had been shown, however, that in the consid-
ered configuration tachyonic modes are present so that the color string will be unstable.
In [2] the vacuum energy of a spinor field in the background of a Abrikosov-string in the
Abelian-Higgs model was calculated. The developed earlier technique had been gener-
alized to handle numerically given backgrounds too. In [3] qunatum corrections to the
mass of the supersymmetric Abrikosov-Nielsen-Olesen vortec was studied. Contrary to
earlier calculations a non-zero value of the mass shift was obtained. This value was later
confirmed in [4]. The paper [5] studies chiral anomaly for local (bag) boundary conditions.

Recent and earlier advances of the heat kernel technique with applications to quantum
field theory are summarised in the review paper [6].

[1] M. Bordag, Phys. Rev. D 67, 065001 (2003).
[2] M. Bordag and I. Drozdov, Phys. Rev. D 68, 065026 (2003).
[3] D.V. Vassilevich, Phys. Rev. D 68, 045005 (2003). [arXiv:hep-th/0304267].
[4] A. Rebhan, P. van Nieuwenhuizen and R. Wimmer, Nucl. Phys. B 679, 382 (2004);
hep-th/0307282.
[5] V. N. Marachevsky and D. V. Vassilevich, Nucl. Phys. B 677, 535 (2004); hep-
th/0309019.
[6] D. V. Vassilevich, Phys. Rept. 388, 279 (2003); hep-th/0306138.
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5.2.2 Gravity in two dimensions

D.V. Vassilevich
Two-dimensional gravity is a good testing ground for various ideas of classical and

quantum general relativity and of the black hole physics. In [1] we have tested whether one
can formulate a meaningful local gravity theory starting from the so-called double-scale
special relativity and from the kappa-deformed Poincare symmtery. In two dimensions
the answer is negative: the resulting theory is either indistinguishable from standard
theories or is not diffeomorphism invariant. The papers [2] and [3] studied applications
of two-dimensional gravity to strings. In [2] the Green functions corresponding to the
virtual black hole exchange [4] were constructed. Due to the conformal symmetry of
string gravity they exhibit a very simple structure. In [3] radiative correction to the
specific heat of the string black hole are calculated. It appeares that quantum corrected
specific heat is positive, which may provide an explanation to the information paradox of
quantum black holes.

[1] D. Grumiller, W. Kummer and D. V. Vassilevich, Ukr. J. Phys. 48, 329 (2003); hep-
th/0301061.
[2] D. Grumiller, W. Kummer and D. V. Vassilevich, Eur. Phys. J. C 30, 135 (2003).
[3] D. Grumiller, W. Kummer and D. V. Vassilevich, JHEP 0307, 009 (2003); hep-
th/0305036.
[4] D. Grumiller, W. Kummer and D. V. Vassilevich, Nucl. Phys. B 580, 438 (2000);
gr-qc/0001038.

5.2.3 Quantum field theory of light-cone dominated hadronic
processes

B. Geyer, J. Eilers

Light-cone dominated, polarized hadronic processes at large momentum transfer fac-
torize into process-dependent hard scattering amplitudes and process-independent non-
perturbative generalized distribution amplitudes. Growing experimental accuracy requires
the entanglement of various twist as well as (target) mass contributions and radiative cor-
rections. Their quantum field theoretic prescription is based on the nonlocal light-cone
expansion [1].

The group theoretical procedure allowing for the decomposition of nonlocal tensor-
valued light-ray operators into tensorial harmonic operators with well-defined geometric
twist (τ = dimension − spin), thereby taking trace terms correctly into account [2], has
been studied and applied further:
• A rigorous treatment of the (infinite) twist decomposition off the light-cone for non-local
vector operators has been given and applied to relevant QCD operators thereby deter-
mining the power resp. target mass corrections being essential for the related distribution
amplitudes [3].
• These results are applied to virtual (non-forward) Compton scattering in order to rigor-
ously obtain the target mass dependence of their double-distribution amplitudes in leading
twist approximation [4]. Thereby, the generalization of the Wandzura-Wilczek represen-
tation for the distribution amplitudes from forward to non-forward case - together with
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new distribution amplitudes - and analogous representations for distribution amplitudes
of the symmetric part of the Compton amplitude has been found.
• A general, constructive procedure of determining the (infinite) spin resp. twist decom-
position of non-local off-cone tensor operators of any rank and arbitrary symmetry type,
in any space-time dimension d, has been given and implemented in a Java programme [5].
It has been applied to the twist decomposition for non-local (in x-space) QCD operators
of rank 2 and 3.

[1] S.A. Anikin, O.I. Zavialov, Ann. Phys. (N.Y.) 116, 135 (1978); D. Müller, D.
Robaschik, B. Geyer, F.-M. Dittes and J. Hořeǰsi, Fortschr. Phys. 42, 101 (1994).
[2] B. Geyer, M. Lazar and D. Robaschik, Nucl. Phys. B 559, 339 (1999); B 618, 99
(2001); B. Geyer and M. Lazar, Nucl. Phys. B 581, 341 (2000), Phys. Rev. D 63,
094003 (2001); J. Eilers and B. Geyer, Phys. Lett. B 546, 78 (2002).
[3] J. Eilers, B. Geyer, and M. Lazar, Phys. Rev. D 69, 034015 (2004).
[4] B. Geyer, D. Robaschik, J. Eilers, and J. Blümlein, Virtual Compton scattering and
non-forward Wandzura-Wilczek representation, in preparation.
[5] J. Eilers, Thesis, Leipzig 2004.

5.2.4 Quantum symmetries of general gauge theories

B. Geyer

General gauge theories are characterized by local symmetries whose generators, in contrast
to the well-known Yang-Mills theories, not necessarily obey a Lie algebra structure. Their
gauge algebra may be open, i.e., closed modulo equations of motion, and, in addition,
may be reducible (up to any finite order of reducibility) requiring for the introduction of
various extra ghost and auxiliary fields. Nevertheless, the quantum symmetries of such
theories [including higher dimensional and N−extended super Yang-Mills theories (SYM),
(super) string theories and topological field theories (TQFT)] are governed by (extended)
BRST operations resp. master equations. – Two different routes of research have been
considered:

Lagrangian Quantization of General Gauge Theories: The well-known Batalin-Vilkovisky
(BV) quantization using a master equation in terms of fields and antifields (sources) found
various extensions in the past.
• Continuing previous work [1], we applied the Sp(2)−symmetric quantization of Batalin,
Lavrov & Tyutin [2] to W3−gravity [3], the simplest model with open gauge algebra,
studied the arbitrariness in the realization of the gauge algebra as well as problems related
to the Hamiltonian approach; we showed by explicit construction that solutions of the
related classical master equation necessarily exceed third order in (anti)ghost and auxiliary
fields.
• A former partial study of (modified) triplectic quantization [4] in general coordinates
[5] has been extended to the case when the basic manifold consists of fields with both
even and odd Grassmann parity [6]; a superfield formulation of that approach has been
found [7]. In addition, we introduced Fedosov supermanifolds and showed that their Ricci
curvature in the even resp. odd case vanishes resp. (in general) does not vanish [8].

[1] B. Geyer, P.M. Lavrov, P.Yu. Moshin, Int. J. Mod. Phys. A 16, 4297 (2001).
[2] I.A. Batalin, P.M. Lavrov, I.V. Tyutin, J. Math. Phys. 31, 1487 (1990); ibid. 32, 532
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(1990); ibid. 32, 2513 (1990).
[3] B. Geyer, D.M. Gitman, P.M. Lavrov, P.Yu. Moshin, Int. J. Mod. Phys. A18, 5099
(2003).
[4] I.A. Batalin, R. Marnelius, Phys. Lett. B 350, 44 (1995); Nucl. Phys. B 465, 521
(1996); I.A. Batalin, R. Marnelius, A.M. Semikhatov, Nucl. Phys. B 446, 249 (1995);
B. Geyer, D.M. Gitman, P.M. Lavrov, Mod. Phys. Lett. A 14, 661 (1999); Theor. Math.
Phys. 123, 813 (2000).
[5] B. Geyer, P.M. Lavrov, A.P. Nersessian, Phys. Lett. B 512, 211 (2001); Int. J. Mod.
Phys. A 17, 349 (2002).
[6] B. Geyer and P.M. Lavrov, hep-th/0304011.
[7] B. Geyer, D.M. Gitman, P.M. Lavrov, P.Yu. Moshin, Int. J. Mod. Phys. A 19, 737
(2004).
[8] B. Geyer, P.M. Lavrov, hep-th/0306218.

Cohomological Gauge Theories: Topological quantum field theories are the simplest QFT’s
with the defining property that their Green functions are independent of the local Rie-
mannian structure of the underlying manifold.
• Continuing our constructions of cohomological gauge theories of Hodge type [9] (i.e.,
gauge theories where the generators of the topological shift, co-shift and gauge symme-
try together with a discrete Hodge-type �−operation obey a complex being completely
analogous to the de Rham complex) we studied the basic cohomology of the twisted
N = 16, D = 2 super Maxwell theory, showed that the corresponding BRST-Laplacian
on-shell does not vanish and constructed the basic topological invariants [10].
• We studied cohomological gauge theories with special holonomy group H ∈ SO(D) in
D > 4 dimensions being invariant under metric variations respecting H. First, we explic-
itly constructed the Euclidean SYM on a hyper Kähler eightfold with NT = 3 and Sp(4)–
holonomy [11], second, we found a cohomological extension of the Spin(7)−invariant,
D = 8 SYM [12] and, finally, we determined the G2−invariant D = 7 SYM by dimen-
sional reduction of Spin(7)−invariant, NT = 1, D = 8 SYM thereby showing that it
constitutes a higher-dimensional analogue of the D = 3 super BF theory [13].

[9] B. Geyer, D. Mülsch, Phys. Lett. B 518, 181 (2001); Int. J. Mod. Phys. A 17, 4425
(2002); Nucl. Phys. B 662, 531 (2003).
[10] B. Geyer, D. Mülsch, Phys. Lett. B 575, 349 (2003)
[11] D. Mülsch, B. Geyer, hep-th/0310275.
[12] D. Mülsch, B. Geyer, hep-th/0304096.
[13] D. Mülsch, B. Geyer, hep-th/0310237.

5.2.5 Casimir effect and real media

M. Bordag, B. Geyer

The vacuum of quantum fields shows a response to changes in external conditions with
measurable consequences. The investigation of the electromagnetic vacuum in the pres-
ence of real media is of actual interest in view of current experiments as well as nanoscopic
electro-mechanical devices [1]. In recent experiments using atomic force microscopy the
Casimir effect had been measured with high accuracy. This required a detailed investiga-
tion of the influence of real experimental structures on the corresponding force.
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Using the surface impedance approach we derived the Lifschitz formula for the free
energy and the Casimir force between real metals in perfect agreement with thermody-
namics; thereby a longstanding controversy could be resolved [2]. The result has been
applied to a configuration of two parallel plates of gold; the dependence on the tempera-
ture has been determined.

[1] M. Bordag, U. Mohideen, V. M. Mostepanenko, Phys. Rept. 353, 1 (2001).
[2] B. Geyer, G. L. Klimchitskaya, V. M. Mostepanenko, Phys. Rev. A 67, 062102 (2003).

5.2.6 Structure of the gauge orbit space and study of gauge
theoretical models

G. Rudolph, Ch. Fleischhack, M. Schmidt, Sz. Charzynski

Based upon our results on the structure of the gauge orbit space [1] and on lattice gauge
theories [3–5], we continued to investigate non-perturbative aspects of quantum gauge
theory with special emphasis on the following items:
i) The study of singular Marsden-Weinstein reduction [6] and geometric quantization
of singular Marsden-Weinstein quotients [7] for model spaces like SU(3) × · · · × SU(3)
was pushed forward. Such spaces arise as configuration spaces in lattice QCD. This
work aims at clarifying the role of nongeneric strata in quantum gauge theory. From the
mathematical point of view, nontrivial problems of classical invariant theory and complex
geometry arise. Neglecting some delicate mathematical aspects, the analogous problem
for full Yang-Mills theory on compact manifolds is under investigation, too.
ii) The study of non-perturbative aspects of gauge theories on the lattice in terms of
observables was continued. Applying similar techniques as for lattice QED, see [3,4], the
observable algebra and the charge superselection structure of QED was investigated, see
[5]. Further publications are in preparation.
iii) Studying the structure of the observable algebra for lattice QCD in purely algebraic
(representation independent) terms, we were led to investigate generalizations of ordinary
superalgebras, see [8]. This is a promising field of pure mathematics, with applications in
different areas of physics.
(iv) Christian Fleischhack continued the study of gauge theories within the Ashtekar
approach, with special emphasis on noncompact structure groups and applications in
quantum gravity.

[1] G. Rudolph, M. Schmidt, I.P. Volobuev, J. Math. Phys. Anal. Geom. 5, 201–241
(2002); J. Geom. Phys. 42, 106-138 (2002); J. Phys. A: Math. Gen. 35, R1–R50 (2002).
[3] J. Kijowski, G. Rudolph, A. Thielmann, Commun. Math. Phys. 188, 535–564 (1997).
[4] J. Kijowski, G. Rudolph and C. Śliwa, Annales H. Poincaré 4, 1137 (2003).
[5] J. Kijowski, G. Rudolph, J. Math. Phys. 43, 1796 (2002).
[6] R. Sjamaar, E. Lerman, Ann. Math. (2), 134, 375 (1991).
[7] J. Huebschmann, math-dg/0104213.
[8] P. Jarvis and G. Rudolph, J. Phys. A, 36, No. 20, 5531 (2003).
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5.2.7 Noncommutative geometry

G. Rudolph, O. Richter

The study of the theory of foliations in the sense of Connes [1] was continued. Two
papers on the subject have been published [2]. These contain results about spectral triples
related to the Kronecker foliation of the 2-torus. In particular, the associated differential
calculi were analyzed explicitly and for one spectral triple a topological invariant (Chern
character) was calculated.

The study of quantum principal bundles was continued. Papers on quantum discs and
quantum real projective space as quotients of Podles quantum spheres and their interpre-
tation in terms of graph C∗-algebras have been published [3]. Concerning the study of
quantum Hopf bundles, Chern-Connes pairings between traces on the basis algebra and
the K0-classes for projectors of line bundles associated with a quantum Hopf bundle were
calculated for the locally trivial bundle [4,5] and the Hopf bundle over the generic Podleś
spheres [6]. This way, one obtains the winding numbers of these line bundles and one can
conclude the topological non-triviality of the quantum Hopf bundle. These results are
published in [7].

The example of a locally trivial Hopf bundle has been generalized, leading to two
nonisomorphic quantum principal bundles living over two different quantum two-spheres.
One of these two-spheres is topologically the generic Podleś sphere, the other one results
from a gluing of two quantum discs with an extra twist. The total spaces of the bundles
coincide and are hybrids of the 3-sphere of the locally trivial bundle and the 3-sphere of
Matsumoto [8]. Many of the results mentioned above (in particular Chern numbers) are
true also for these new examples. The total space can be viewed as quantum analog of a
Heegaard splitting of the 3-sphere, and its topological properties (in particular K-theory)
are still investigated.

[1] A. Connes, H. Moscovici, GAFA 5 (2), 174–243 (1995).
[2] R. Matthes, O. Richter and G. Rudolph, J. Geom. Phys. 46, 48 (2003); Banach Center
Publications 61, 125–147 (2003).
[3] P.M. Hajac, R. Matthes, W. Szymański, Algebras and Representation Theory 6, 169–
192 (2003); Rep. Math. Phys. 51, 215–224 (2003).
[4] D. Calow, R. Matthes, J. Geom. Phys. 41, 114–165 (2002).
[5] P.M. Hajac, R. Matthes, W. Szymański, to appear in Algebras and Representation
Theory.
[6] T. Brzeziński, S. Majid, Commun. Math. Phys. 213, 491–521 (2000).
[7] P.M. Hajac, R. Matthes, W. Szymański, C. R. Acad. Sci. Paris, Ser. I 336, 925–930
(2003).
[8] K. Matsumoto, Japan J. Math. 17, 333–356 (1991).
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5.2.8 One-particle properties of quasiparticles in the half-filled
Landau level

W. Weller

Using field theoretical methods, two-dimensional electron systems in strong magnetic
fields were studied. The investigations were concentrated on the half-filled lowest Landau
level.

The theory for the half-filled lowest Landau level of Halperin et al. [1] transforms from
the electrons to Chern–Simons fermions by eliminating the external magnetic field. The
theory leads to an infrared divergent energy. It was shown [2] that this is due to missing
diagrams and to the fact that in [1] the ordering of the operators in the path integral was
changed. The correct formulation yields a three-particle interaction. For this interaction,
a path integral representation was developed [2] with correct ordering of the operators by
using time steps with intermediate times.

The energy was computed by evaluating the path integral in various approximations.
The calculated energies are convergent and agree well with numerical simulations. The
idea of the Singwi-Sj”olander approach to the 3d Coulomb problem was extended to the
Chern-Simons theory [3] with even better results for the energies.

An approximation scheme was developed conserving the particle number and the con-
straints. Now, the conserving Hartree–Fock approximation is being numerically evaluated.
The self energy of the Chern–Simons fermions is until now infrared divergent. For the
solution of that problem we started investigations based on a transformation introduced
by Bohm and Pines and by Shankar and Murthy [4]; that transformation transforms from
the Chern–Simons fermions to the composite fermions (CF), which include the correlation
hole. The conserving approximations are extended to the CF.

[1] B.I. Halperin, P.A. Lee, N. Read, Phys. Rev. B 47, 7312 (1993).
[2] W. Weller, J. Dietel, Th. Koschny, W. Apel in R. Casalbuoni et al. (eds.), 6th Int.
Conf. on Path Integrals, World Scientific, Singapore 1999, p. 466.
[3] J. Dietel, W. Weller, Phys. Rev. B 64, 195307 (2001).
[4] R. Shankar, G. Murthy, Phys. Rev. Lett. 79, 4437 (1997).
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Max-Planck Institute for Mathematics in the Sciences, Leipzig
Dr. Markus Lazar

Institute of Theoretical Physics, Brandenburg Technical University Cottbus
Prof. Dr. Dieter Robaschik

Institute of Nuclear Physics, University of São Paulo
Prof. Dr. Dmitry M. Gitman
Dr. P.Yu. Moshin (on absence of Pedagogical University Tomsk)

Department of Mathematical Physics, Pedagogical University Tomsk
Prof. Dr. Petr M. Lavrov

Wissenschaftszentrum Leipzig e.V.
Dr. Dietmar Mülsch
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5.3 Theory of Elementary Particles

5.3.1 Introduction

The Particle Physics Group performs basic research in the quantum field theoretic de-
scription of elementary particles and in phenomenology. Topics of current interest are
conformal symmetry and its breaking in the context of supersymmetric theories, renor-
malization problems, electroweak matter at finite temperature and the derivation of Regge
behaviour of scattering amplitudes from Quantum Chromodynamics. Perturbative and
non-perturbative methods are applied to answer the questions. In perturbation theory the
work is essentially analytical using computers only as a helpful tool. Lattice Monte Carlo
calculations as one important non-perturbative approach however are based on computers
as an indispensable instrument. Correspondingly the respective working groups are orga-
nized: in analytical work usually very few people collaborate, in the lattice community
rather big collaborations are the rule. Our group is involved in many cooperations on the
national and international level (DESY, Munich; France, Russia, Armenia, USA, Japan).
Since elementary particles are very tiny (of the order of 10−15 m) and for the study of
their interactions large accelerators producing enormously high energy are needed, it is
clear that results in this direction of research do not have applications in daily life im-
mediately. To clarify the structure of matter is first of all an aim in its own and is not
pursued for other reasons. But particle theory has nevertheless a very noticeable impact
on many other branches by its power of providing new methodological insight. Similarly
for the student specializing in this field the main benefit is her/his training in analysing
complex situations and in applying tools which are appropriate for the respective prob-
lem. As a rule there will be no standard procedures which have to be learned and then
followed, but the student has to develop her/his own skill according to the need that
arises. This may be a mathematical topic or a tool in computer application. Jobs which
plainly continue these studies are to be found at universities and research institutes only.
But the basic knowledge which one acquires in pursuing such a subject opens the way
to many fields where analytical thinking is to be combined with application of advanced
mathematics. Nowadays this seems to be the case in banks, insurance companies and
consulting business.

5.3.2 High-energy asymptotics and integrable quantum systems

R. Kirschner

The aim of this project is to develop methods for treating the Regge and Bjorken limits
in gauge theories like QCD. We rely on the idea of the high-energy effective action [1]
which we have shown in recent years to be a useful tool for analyzing the asymptotics
of scattering amplitudes. In the Regge case the action describes the scattering by the
exchange of reggeized quarks and gluons. The reggeon and parton interactions exhibit
remarkable symmetry properties and can be related to integrable quantum systems.

In 2003 we have studied the construction of intergrable quantum systems based on
the Jordanian deformation of sl(2) symmetry [2]. In our application to conformal trans-
formation of the light ray this deformation results in a breaking of scaling symmetry but
preserves the translation symmetry. This is similar to the conformal symmetry breaking
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in field theories.

We have formulated representations of the deformed symmetry in terms of polynomials
and solved the Yang-Baxter relation for generic infinite-dimensional representations both
in spectral and integral form.

This work continues previous investigations, where Yang-Baxter solutions with super-
symmetric extension and standard quantum deformation of conformal symmetry [3,4]
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(1998) 348; Phys. Rev. D58(1998) 014004.
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5.3.3 The Nucleon in a Finite Volume and in Chiral
Perturbation Theory

M. Göckeler

Monte Carlo simulations of lattice QCD with Nf = 2 dynamical quarks are now de-
livering physical results. In particular, several groups have computed the nucleon mass
for a variety of lattice actions, quark masses and volumes [1-3]. Due to limited com-
puter resources, the quark masses are larger than in reality and the volumes are relatively
small. Still one would like to extract as much physically relevant information from the
simulations as possible. One way of doing so consists in comparing with formulae from
chiral perturbation theory. Considering the underlying chiral effective field theory in a
finite volume one can describe the dependence of the nucleon mass on the quark mass
and on the volume in a unified framework, where the finite size effects are due to pions
“propagating around the spatial box”.

In Ref. [4] it has been demonstrated that relativistic baryon chiral perturbation theory
leads to a good chiral extrapolation function for the nucleon mass in a large (“infinite”)
volume connecting available lattice results with the physical value.

In this project we have worked out the finite size effects for the nucleon mass on the
basis of the same chiral effective field theory in the first two nontrivial orders (O(p3) and
O(p4)) [5]. We find for a spatial box of length L

mN(L) −mN(∞) = ∆3(L) + ∆4(L) +O(p5) ,

where the O(p3) contribution is given by

∆3(L) =
3g2

Am0m
2
π

16π2f 2
π

∫ ∞

0

dx
∑
�n�=�0

K0

(
L|�n|

√
m2

0x
2 +m2

π(1 − x)

)

and the correction of O(p4) reads

∆4(L) =
3m4

π

4π2f 2
π

∑
�n�=�0

[
(2c1 − c3)

K1(L|�n|mπ)

L|�n|mπ

+ c2
K2(L|�n|mπ)

(L|�n|mπ)2

]
.

Here Kν(z) are modified Bessel functions and m0 denotes the nucleon mass in the chiral
limit. The coupling constants gA, fπ, ci appear already in the infinite volume theory.
They do not depend on L and are also taken in the chiral limit. The finite volume does
not introduce any new parameter! Therefore we can take the values of the coupling con-
stants from the analysis of the nucleon masses in large volumes, supplemented by some
phenomenological input, to obtain a parameter-free prediction of the finite size effects.
In Fig. 1 this is compared with Monte Carlo data [3] for mπ = 545 MeV demonstrating
a surprisingly good agreement. So we think that we have made some progress towards a
better understanding of the nucleon.
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Fig. 1: Volume dependence of the nucleon mass for mπ = 545 MeV. The dotted curve
shows the contribution of the p3 term, while the solid curve includes also the p4 correction.
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5.3.4 The photon propagator in compact QED(2+1): The effect
of wrapping Dirac strings

A. Schiller

In this project we continue to study the photon propagator in three dimensions.
We discuss the influence of closed Dirac strings on the photon propagator in the Lan-

dau gauge emerging from a study of the compact U(1) gauge model in 2+1 dimensions.
This gauge also minimizes the total length of the Dirac strings. Closed Dirac strings are
stable against local gauge-fixing algorithms only due to the torus boundary conditions
of the lattice. We demonstrate that these left-over Dirac strings are responsible for the
previously observed unphysical behavior of the propagator of space-like photons (DT ) in
the deconfinement (high temperature) phase. We show how one can monitor the num-
ber N3 of thermal Dirac strings which allows to separate the propagator measurements
into N3 sectors. The propagator in N3 �= 0 sectors is characterized by a non–zero mass
and an anomalous dimension similarly to the confinement phase. Both mass squared and
anomalous dimension are found to be proportional to N3. Consequently, in the N3 = 0
sector the unphysical behavior of the DT photon propagator is cured and the deviation
from the free massless propagator disappears.
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Fig. 1: The total form factor DT for spatial photons in the different thermal Dirac string
sectors
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5.3.5 Quark spectra and light hadron phenomenology from
overlap fermions with improved gauge field action

A. Schiller (UKQCD-QCDSF-collaboration)

Lattice calculations at small quark masses, i.e. in the chiral regime, require actions with
good chiral properties. Overlap fermions have an exact chiral symmetry on the lattice
and thus are predestined for this task. A further advantage of overlap fermions is that
they are automatically O(a) improved.

The massive overlap operator is defined by

D =
(
1 − amq

2ρ

)
DN +mq , DN =

ρ

a

(
1 +

X√
X†X

)
, X = DW − ρ

a
,

where DW is the Wilson-Dirac operator.
We present first results from a simulation of quenched overlap fermions with improved

gauge field action. Among the quantities we study are the spectral properties of the
overlap operator, the chiral condensate and topological charge, quark and hadron masses,
and selected nucleon matrix elements. To make contact with continuum physics, we
compute the renormalization constants of quark bilinear operators in perturbation theory
and beyond.
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5.3.6 Double gauging of U(1) symmetry on noncommutative
space

Yi Liao, Klaus Sibold

Charge is a global property of fields. Its conservation implies a global U(1) symme-
try. When the symmetry is gauged on ordinary spacetime, the charge of a field specifies
how the field transforms locally together with the gauge field. This gauging procedure
may be generalized to field theory on noncommutative (NC) spacetime in the approach
of the Moyal-Weyl correspondence. In U(1) gauge theory, the following types of matter
field transformation rules have been studied [1]

ψ+(x) → U(x) � ψ+(x),
ψ−(x) → ψ−(x) � U−1(x),
ψ0(x) → U(x) � ψ0(x) � U

−1(x),

besides the trivial identity representation. In our work [2] we pointed out a new transfor-
mation rule for matter fields that is more general than the ones listed above, i.e.,

ϕ(x) → UL(x) � ϕ(x) � U−1
R (x),

where UL,R(x) are two independent starred exponentials. This generalization is based on
the following observation. The fact that the ϕ field carries a conserved, additive charge is
strong enough to fix uniquely its local transformation rule on ordinary spacetime but not
so on NC spacetime where the commutative point-wise multiplication is replaced by the
noncommutative star product. The order of factors becomes relevant as we already saw
in the transformation rules for the above ψ fields. On the other hand, as far as charge
is concerned, the requirement that must be met is the global transformation rule of the
charged field for which there is no difference between the point-wise and star product. This
is indeed the case for the new rule: for constant UL,R, only the combination U = ULU

−1
R

is relevant. Furthermore, multiplying more factors like UL,R(x) from the left or right is
ambiguous because the order of these factors, while relevant due to the star, is not a
well-defined concept. This makes the new rule the most general transformation that can
be assumed for a charged field.

The implementation of the new transformation rule necessarily demands two U(1)
gauge bosons and thus a double gauging of one global U(1) symmetry on NC space. We
suggested how the resulting theory should be interpreted in terms of physical degrees of
freedom that are identified using the global property of charge: one gauge boson interacts
with the charge while the other interacts only noncommutatively and thus decouples on
ordinary space. We have also shown that the interactions in this theory have a richer
structure than those obtained by a direct gauging of the charge U(1) symmetry.
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[2] Y. Liao, K. Sibold, Phys. Lett. B586, 420 (2004).
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5.3.7 CKM matrix renormalization

Yi Liao

Since the Cabibbo-Kobayashi-Maskawa (CKM) matrix appearing in the charged cur-
rent sector of the standard model (SM) contains free physical parameters, it will generally
be subject to renormalization. However, compared to other physical parameters in SM,
there is no renormalization scheme that is more physically motivated than others. The
necessity to renormalize the CKM matrix in order to obtain an ultraviolet (UV) finite re-
sult for a physical amplitude was first emphasized in Ref. [1] for two generations. The case
of three generations was then studied in Ref. [2] in the on-shell renormalization scheme
of SM. Unfortunately, the prescription proposed by the latter was shown to contain a
UV finite part that is gauge parameter dependent [3], which must be avoided for physical
parameters. Other alternative prescriptions were also suggested [4]. All of these differ
only in a UV finite and gauge parameter independent part in the counterterm for the
CKM matrix and can thus be understood as renormalization scheme dependence.

In our work [5] we showed how a simple inspection of the one loop contribution to
quark self-energies suggests a way of splitting them: one part that is UV divergent but
gauge parameter independent, to be absorbed into the CKM matrix counterterm, and the
other that is UV finite but gauge parameter dependent, to be put back to form renor-
malized physical amplitudes. The CKM matrix counterterm so obtained shares with all
proposals made so far the requisite properties: gauge parameter independence, unitarity
constraints and absorption of the remaining UV divergence in physical amplitudes. It
also enjoys a nice feature that is incorporated in some of those prescriptions; namely,
the renormalized physical amplitudes are smooth when the up-type (or down-type) quark
masses approach each other. We also made a point that seems to have not been empha-
sized in the literature. When one works in a specific representation of the CKM matrix
which is often convenient in practical calculations, caution must be exercised in interpret-
ing the CKM matrix counterterm in terms of its rotation angles and CP phase. There is
a relative rephasing, i.e., a change of representations between the bare and renormalized
CKM matrices due to renormalization effects. This rephasing must be removed before
one can write down the counterterms for those angles and phase. We showed how this can
be done using the degrees of freedom available in the on-shell renormalization scheme.
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5.3.8 N = 4 supersymmetric Yang-Mills theory

P. Heslop

There has been greatly renewed interest in the study of superconformal field theories
in four dimensions, following from the conjectured correspondence connecting these with
supergravity or string theory on anti de-Sitter spacetime backgrounds: the AdS/CFT
correspondence [1]. Superconformal field theories and in particular N = 4 super Yang-
Mills (SYM) theory are also of great interest in their own right. N = 4 SYM is the most
symmetric known flat space quantum field theory in four dimensions (more than 4 super-
symmetries leads to curved spacetime.) It is a gauge theory whose classical Lagrangian is
uniquely determined given the gauge group and a value of the coupling constant. These
properties give the theory great theoretical and pedagogical interest: one studies this the-
ory as a stepping stone for learning more about more complicated but phenomenologically
more interesting gauge theories such as QCD or GUTs. In particular one would like to
study the extent to which the theory is determined by its symmetries.

A program was initiated in [2] to study Greens functions of certain operators- known
as chiral primary operators (CPOs)- in N = 4 SYM. In particular one wishes to solve
the superconformal Ward identities which are assumed to hold for these correlation func-
tions, with the aid of a particular superspace known as analytic superspace [3]. This
superspace has many nice properties: the entire superconformal symmetry is manifest;
superconformal fields satisfy simple analyticity constraints only; it has a structure which
is very similar to Minkowski space.

In [4] we have extended this analysis to completely solve (at least in principle) the
Ward identities for all Greens functions of all gauge invariant operators in the theory. We
have also performed a complete analysis of an additional U(1) group which is a symmetry
of a sector of the theory and which leads to the non-renormalisation of some Greens
functions via the reduction formula.

In [5] we wrote explicitly the four-point functions of CPOs of arbitrary charge for the
first time, allowing a comparison with supergravity on AdS via the AdS/CFT correspon-
dence. A summary of analytic superspace and its application to N = 4 SYM is given
in [7].

In [6] we considered the next simplest operators in N = 4 SYM (after the CPOs)
known as quarter BPS operators. By finding the perturbative two point functions of
these operators and considering them on a different analytic superspace ideally suited for
these operators we were able to resolve a puzzle concerning the compatibility of these
with superconformal symmetry.
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[6] P. J. Heslop, arXiv:hep-th/0403144.
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5.4 Theory of Condensed Matter

5.4.1 General Scientific Goals

The topics of research in the Theory of Condensed Matter group are stochasticity and dis-
order as well as structure formation in soft condensed matter and solids, models of complex
biological systems, strongly correlated electron systems, and superconducting materials.
Investigations using modern analytic methods and computer applications complement and
stimulate each other. Research is performed in cooperation with mathematicians as well
as with theoretical and experimental physicists, biologists and researchers in medicine.
There are well established collaborations with research groups in France, Germany, Italy,
Russia, Switzerland, UK, and USA.

Noise induced phenomena are studied in a number of different systems. Structure
formation, stochastic stability, and on-off intermittency is investigated in liquid crys-
tals driven by stochastic electric fields (Cooperation with the Institute for Experimental
Physics I). Noise induced non-equilibrium phase transitions are studied in coupled ar-
rays of stochastically driven nonlinear systems. The statistics of first passage times and
self-organized criticality is investigated in stochastic nonlinear systems with time delay.

Mathematical modeling of the immune system. Using methods of nonlinear
dynamics and statistical physics, we study the architecture and the random evolution
of the idiotypic network of the B-cell subsystem and describe the regulation of balance
of Th1/Th2-cell subsystems, its relation to allergy and the hyposensitization therapy
(Cooperation with the Institute for Clinical Immunology and Transfusion Medicine).

Strongly correlated electron systems. The unconventional magnetic properties
of transition metal oxides, such as the mixed-valency manganites, are investigated on the
basis of correlation models including anisotropic Heisenberg-type exchange interactions.
Using Green’s function techniques the effects of magnetic short-range order at arbitrary
temperatures are studied in comparison with experiments.

Superconductors. Conventional and high-temperature superconductivity are stud-
ied within a gauge field theory by drawing parallels between an Abelian Higgs-like model
in the isotropic case and a time-dependent Lawrence-Doniach model for layered high-
Tc cuprates. The aim is the macroscopic derivation of an effective action to describe
the dynamics of the superconducting condensate at zero temperature in the presence of
electromagnetism.
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5.4.2 Nonlinear Dynamics and Statistical Physics of the
Immune System

Ulrich Behn, Markus Brede and Jan Richter

The immune system is a hierarchically organized natural adaptive system built by
a macroscopic number of constituents which shows a very complex behavior on several
scales of temporal, spatial, and functional organization. It is thus naturally a subject of
modelling with methods of statistical physics and nonlinear dynamics, for recent reviews
see, e.g., [1-3]. We investigate models describing the architecture of the idiotypic network
formed by the subsystem of B-lymphocytes and the regulation of the Th1-Th2 balance of
the T-lymphocyte subsystem.

B-cells express on their surface receptors (antibodies) of a given specificity (idiotype).
Crosslinking these receptors by complementary structures (antigen or antibodies) stimu-
lates the lymphocyte to proliferate. Thus even without antigen there is a large functional
network of interacting lymphocytes, the idiotypic network. Both the potential repertoire
and the number of idiotypes expressed by an individual at a given time (the expressed
repertoire) are of macroscopic order. In the frame of a simple bit-string model we in-
vestigate the architecture of a randomly generated idiotypic network [4,5]. We identify a
working regime above the percolation transition where a giant cluster coexists with many
small clusters, such that immunological demands as the completeness of the repertoire
and a persistent immunological memory preserved by the internal image of antigen can be
fulfilled. The dynamics of the idiotypic network is driven by the influx of new idiotypes
randomly produced in the bone marrow and by the population dynamics of the lympho-
cytes themself. Modelling this dynamics by simple cellular automata rules we describe
the architecture of the idiotypic network as the highly organized product of a random
temporal evolution.

T-helper lymphocytes have subtypes which differ in their spectrum of secreted cy-
tokines. These cytokines have autocrine effects on the own subtype and cross-suppressive
effects on the other subtype and regulate further the type of immunoglobulines secreted
by B-lymphocytes. The balance of Th1- and Th2-cells is perturbed in several diseases.
For example, in allergy the response to allergen is Th2-dominated. A widespread and
successful therapy consists in the injection of increasing doses of allergen following em-
pirically justified protocols of administration. We seek an explanation of this therapy
studying the nonlinear dynamics of a nonautonomous system of few variables which de-
scribes the Th1/Th2 populations in the sense of a mean field theory [6-9]. Indeed, the
system is driven by proper injections of allergen towards new attractors, where the re-
sponse is Th1-dominated as for healthy individuals. The target of the initial phase of the
therapy whith increasing doses of allergen is in our view not primarily the T-cell system
but it is to desensitize mast cells and basophils, so that the larger doses during the main-
tenance phase of the therapy do not cause allergic symptoms. This is corroborated by a
model describing the dynamics of the mast cell stimulation and the intracellular Calcium
response that triggers the release of inflammatory mediators. A clinical study [9] shows a
significant decrease of specific IgE accompanied by an increase of specific IgG4 due to the
therapy in accordance with predictions of the model. These investigations are performed
in collaboration with Prof. G. Metzner (Institute of Clinical Immunology).
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(Eds.), Birkhäuser, Basel (2004), 399-410.

[4] M. Brede and U. Behn, Phys. Rev. E 64, 011908 (2001), ibid. 67, 031920 (2003).
[5] M. Brede, Randomly evolving idiotypic networks: Dynamics and architecture, PhD

thesis, University of Leipzig 2003.
[6] J. Richter, G. Metzner and U. Behn, J. Theor. Med. 4, 119 (2002).
[7] J. Richter, Nonlinear Dynamics of Models Describing Th1/Th2 Regulation, Allergy

and Venom Immunotherapy, PhD thesis, University of Leipzig 2003.
[8] J. Richter, U. Behn, and G. Metzner, in: Clinical Immunology and Allergy in

Medicine, Proc. 21st EAACI Congress 2002, Naples, G. Marone (Ed.), JGC
Editions, Naples (2003), 257-262.



274 5. INSTITUTE FOR THEORETICAL PHYSICS

5.4.3 On-off Intermittency in Nematic Liquid Crystals Driven
by Multiplicative Noise

Ulrich Behn, Thomas John, Ralf Stannarius

Electrohydrodynamic convection (EHC) in liquid crystals is a well investigated phe-
nomenon of pattern formation, its physical mechanism is understood and it is easily ac-
cessible to experimental control and observation. This allows a quantitative comparison
of theoretical models with experimental results; for a recent review see [1]. We investi-
gate on-off intermittency [2] in electrohydrodynamic convection of nematic liquid crystals
driven by a stochastic dichotomous electric voltage.

If the characteristic times of the system are well separated from the correlation time
of the noise, the onset of the roll pattern is sharp, similar to the case of deterministic
driving. If these times are of the same order as it is typical for pure stochastic driving
one observes outbursts of spatially regular roll pattern which interrupt quiescent (laminar)
periods. The phenomenon is related to the persistence problem of a suitable random walk.
At the sample stability threshold [3] the probability distribution of laminar periods is a
power law with exponent -3/2 over several decades. We found a quantitative agreement
of experiment, analytical results, and simulations of the nemato-electrohydrodynamic
equations of the basic model. The phenomenon represents thus a first example of on-off
intermittency in a spatially extended dissipative system [4].

In addition to the previous experiment based on orthoscopic microscopy the distri-
bution of laminar periods and other statistical characteristics of the stochastic signal as
the distribution of amplitudes and the power spectrum are determined by laser scattering
techniques [5] and compared with theoretical results and simulations [6,7]. Again, at the
stochastic stability threshold universal scaling laws are found over several orders of mag-
nitude. Using laser scattering technique first explorations of noise induced wave number
selection have been performed.

Our theoretical and experimental findings are corroborated by investigations of a phe-
nomenological Swift-Hohenberg model by Fujisaka and coworkers [8].
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5.4.4 Noise Induced Phenomena in Nonlinear Systems

Ulrich Behn, Micaela Krieger-Hauwede, Arne Traulsen, Edgar Martin

We describe non-equilibrium phase transitions [1] in arrays of spatially coupled dy-
namical systems with cubic nonlinearity driven by multiplicative Gaussian white noise
(Stratonovich models). Depending on the sign of the harmonic spatial coupling we ob-
serve transitions from a state with zero order parameter to a ferromagnetic [2] or an anti-
ferromagnetic stationary state varying the control parameter. Antiferromagnetic ordering
is considered for the first time in this class of models. We determine the phase diagram,
the order of the transitions [3], and the critical behaviour for both global coupling and
nearest neighbour coupling on simple cubic lattices comparing analytical results in mean
field approximation and numerical simulations. In mean field approximation we give an
analytical result for the critical exponent of the magnetization which exhibits a transition
from the classical universal value 1/2 to a non-universal behaviour with increasing ratio
of noise strength and magnitude of the spatial coupling [4]. The critical exponent of the
magnetization as a function of the strength of the spatial coupling has been determined.
Similar results can be obtained for models with other nonlinearities, universality classes
have been determined [5].

Spatially coupled stochastically driven systems are considered in the continuum limit
which leads to stochastic partial differential equations. We show that it is preferable to
use spatiotemporal colored noise in order to avoid unphysical divergencies in this limit
[6]. A generalization of the Ornstein-Uhlenbeck process in 1 + 1 dimensions is proposed
[7].

For a class of stochastically driven nonlinear systems with delayed time argument we
investigated the persistence problem and determined the probability density of first pas-
sage times. For systems spontaneously evolving to a marginally stable state the density is
a power law over several decades in close analogy to self-organized criticality in spatially
extended systems. The marginally stable linear system was considered in the param-
eter range where the instability is towards oscillating solutions and the corresponding
characteristic exponent was determined.

For a class of generalized diffusion processes the asymptotic behavior of the distribution
of first return times is analytically determined [8].
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5.4.5 Spin Correlations in Manganites

D. Ihle, I. Junger and H. Fehske (Universität Greifswald)

The manganites R1−xAxMnO3 (R = La, Pr,Nd and A = Sr, Ca,Ba, Pb) have at-
tracted renewed attention when the phenomenon of colossal magnetoresistance near the
phase transition from the ferromagnetic metallic to the paramagnetic insulating phase
was discovered [1,2]. It is important to understand first of all the observed magnetic
and orbital order and the low-energy excitations in the undoped insulating compound
LaMnO3. Neutron-scattering experiments [2] yield strong evidence for a pronounced fer-
romagnetic short-range order (SRO) in the paramagnetic phase. The magnetic properties
of the S = 2 spin system LaMnO3 may be described by an effective extended Heisenberg
model including a ferromagnetic intraplane and an antiferromagnetic interplane exchange
interaction as well as a single-ion easy-axis spin anisotropy [2]. To provide a good de-
scription of SRO at arbitrary temperatures, the standard spin-wave approaches cannot
be adopted.

In this project low-dimensional quantum spin models with a single-site easy-axis spin
anisotropy were considered, and a second-order Green’s-function theory along the lines
indicated in Refs. [3] and [4] was developed. For comparison, exact finite-lattice diago-
nalizations (ED) were performed. For the one- and two-dimensional S = 1/2 Heisenberg
ferromagnet in a magnetic field, the thermodynamic properties (magnetization, isothermal
magnetic susceptibility, specific heat) at arbitrary temperatures and fields were calculated
in good agreement with ED, Bethe-Ansatz [5], and Monte-Carlo data [6]. In one dimen-
sion and at very low fields, for the first time two maxima in the temperature dependence
of the specific heat were found. Considering the S = 1 ferromagnet with a single-ion spin
anisotropy, additional vertex parameters have to be introduced as compared with the case
S = 1/2, and a good agreement with ED results was obtained.

The project is supported by the DFG through the graduate college ”Quantum Field
Theory”.
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5.4.6 Magnetic Systems with Frustration

J. Richter (Universität Magdeburg), D. Schmalfuss (Universität Magdeburg) and D. Ihle

The exciting magnetic properties of several low-dimensional quantum spin systems
with frustration, such as the layered copper oxychlorides M2Cu3O4Cl2 (M = Ba, Sr) [1]
and the Kagomé antiferromagnet [2], have attracted much attention. To describe the mag-
netic short-range order at arbitrary temperatures, especially in the spin-liquid phase, one
has to go beyond the usual spin-wave approaches [3]. Previously, it was shown that frus-
tration effects in the two-dimensional Heisenberg model with antiferromagnetic nearest-
and next-nearest-neighbor couplings (J1 − J2 model) may be described successfully by a
spin-rotation-invariant Green’s-function theory [4,5]. The role of the interplane coupling
in the stabilization of long-range order in non-frustrated systems was also well described
by this theory [6].

In this project, the second-order Green’s-function approach of Refs. [4] to [6] was ex-
tended to a theory for frustrated spin lattices with basis, where the formal structure of
the theory turned out to be of much higher complexity as compared with previous sit-
uations. In the Kagomé antiferromagnet the influence of the interplane coupling on the
spin correlation functions and the thermodynamic properties was investigated. As the
main result, the spin-liquid phase was found to be stable with respect to the interplane
coupling. To shed more light into the suppression of long-range order by frustration, the
three-dimensional Kagomé ferromagnet was considered, where quantum fluctuations and
frustration effects occur at non-zero temperatures only. The Curie temperature was calcu-
lated to be lower than that of the simple cubic ferromagnet having an equal coordination
number.

The work is supported by the DFG through the projects RI 615/12-1 and IH 13/7-1.
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5.4.7 Quantum Fluctuations at Superconductivity

W. Kolley

Density and current fluctuations in a superconductor create electric and magnetic
fields which in turn couple to the condensate field. The minimum coupling of the gauge
field to the matter field can be described within a modified Abelian Higgs model, which
is gauge invariant but not Lorentz invariant. This is a phenomenological model for,
e.g., weak-coupling s-wave superconductivity at zero temperature (cf., e.g., [1]). The
modification means that the sound velocity enters the kinematical matter part, i. e., the
phonon metric and the photon metric differ in the Lagrange density. This allows one to
study low-energy quantum fluctuations in four-dimensional space-time around a constant
background (in the preferred rest frame of the lattice), provided that the ground-state
is a currentless condensate. Low-energy relativistic spectra with quantum behaviour are
extracted along three scales (in increasing order of magnitude): Debye screening length,
London penetration depth, and coherence length.

The kinematics inherent in the condensate wave function can be expressed in terms
of the
(i) supercurrent velocity, involving the gradient of the phase and corresponding to the
centre-of-mass motion;
(ii) ”osmotic” velocity, due to the amplitude gradient, yielding an internal motion, some
kind of Zitterbewegung [2,3,4].

Thus the motion is decomposed in the classical (i) and quantum (ii) contributions,
respectively. The equations of motion for the matter part result in a continuity equa-
tion and a relativistic Hamilton-Jacobi-type equation. This Hamilton-Jacobi equation
endowed with the acoustic metric includes, in addition to the Higgs potential, a quantum
potential [5,6] connected with the quantum velocity (ii). This interpretation gives an
insight into the compatibility of the macroscopic quantum phenomenon and relativity.
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5.5 Computational Quantum Field Theory

5.5.1 Introduction

The Computational Physics Group performs basic research in classical and quantum sta-
tistical physics with special emphasis on phase transitions and critical phenomena. In
the centre of interest are currently spin glasses, diluted magnets and other physical sys-
tems with quenched, random disorder, a geometrical approach to the statistical physics of
topological defects with applications to superconductors and superfluids, biologically mo-
tivated problems (e.g., protein folding and semiflexible polymers), fluctuating geometries
with applications to quantum gravity (e.g., dynamical triangulations) and soft condensed
matter physics (e.g., membranes and interfaces). Supported by a Development Host grant
of the European Commission, currently also research into the physics of anisotropic quan-
tum magnets is established.

The methodology is a combination of analytical and numerical techniques. The numer-
ical tools are currently mainly Monte Carlo computer simulations and high-temperature
series expansions. The computational approach to theoretical physics is expected to gain
more and more importance with the future advances of computer technology, and will
probably become the third basis of physics besides experiment and analytical theory. Al-
ready now it can help to bridge the gap between experiments and the often necessarily
approximate calculations of analytical work. To achieve the desired high efficiency of the
numerical studies we develop new algorithms, and to guarantee the flexibility required by
basic research all computer codes are implemented by ourselves. The technical tools are
Fortran, C, and C++ programs running under Unix or Linux operating systems and com-
puter algebra using Maple or Mathematica. The software is developed and tested at the
Institute on a cluster of PC’s and workstations, where also most of the numerical analyses
are performed. Large-scale simulations requiring vast amounts of computer time are car-
ried out at the Institute on a recently installed Beowulf cluster with 40 Athlon MP1800+
CPU’s and a brandnew Opteron cluster with 18 processors of 64-bit architecture, at the
parallel computers of the University computing center, and upon grant application at the
national supercomputing centres in Jülich and München on T3E, IBM and Hitachi parallel
supercomputers. This combination of various platforms gives good training opportunities
for the students and offers promising job perspectives in many different fields for their
future career.

The research is embedded in a wide net of national and international collaborations
funded by network grants of the European Commission and the European Science Foun-
dation, and by binational research grants with scientists in Great Britain, France, and
Israel. Close contacts are also established with research groups in Armenia, Austria,
China, Italy, Russia, Spain, Taiwan, and the United States.
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5.5.2 Monte Carlo Studies of Spin Glasses

B. A. Berg∗, A. Billoire∗∗, E. Bittner, W. Janke, A. Nußbaumer, D. B. Saakian∗∗∗
∗ Florida State University, Tallahassee, USA, ∗∗ CEA/Saclay, Gif-sur- Yvette, France,
∗∗∗ Yerevan Physics Institute, Yerevan, Armenia

Spin glasses are examples for an important class of materials with random, competing
interactions [1]. This leads to “frustration”, since no unique spin configuration is favored
by all interactions, and a rugged free energy landscape with many minima separated
by barriers. Standard Monte Carlo simulations are very inefficient in such a case since
they overcome the barriers only very rarely and hence run into ergodicity problems. To
elucidate the scaling behaviour of the barriers with system size we therefore developed
a multi-overlap Monte Carlo algorithm [2] which can be optimally tailored [3] for the
sampling of rare-events. Recently we have further improved this method by combining
it with parallel tempering and N-fold way ideas [4]. First tests indicate [5] that the new
algorithm will enable us to push the studies of the spin-glass phase further towards the
physically more interesting low-temperature regime. As in our previous work at higher
temperatures [6] we focus on the free-energy barriers F q

B in the probability density PJ (q)
of the Parisi overlap parameter q [7] which can be defined in terms of the autocorrelation
times τ q

B of auxiliary Markov chains.
Along a second line of research we have also investigated the diluted generalized

random-energy model (DGREM) which provides an approximation to the ground-state
energy of spin glasses. Applications to two-dimensional q-state Potts models and a com-
parison with numerically determined ground-state energies are reported in Ref. [8].
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5.5.3 Monte Carlo Studies of Diluted Magnets

B. Berche∗, P.-E. Berche∗∗, C. Chatelain∗ and W. Janke
∗ Université Nancy, France, ∗∗ Université Rouen, France

The influence of quenched, random disorder on phase transitions has been the subject of
exciting experimental, analytical and numerical studies in the past few years. To date
most theoretical studies have concentrated on two-dimensional (2D) models with site- or
bond-dilution or bond-disorder [1]. Generically one expects that quenched disorder, under
certain conditions, will modify the critical behaviour at a second-order transition (Harris
criterion) and can soften a first-order transition of the pure system to a second-order one
[2]. In three dimensions (3D), numerical studies have mainly focused on the site-diluted
Ising model [3] where good agreement with field theory was obtained. For the case of a
first-order transition in the pure model, large-scale simulations have only been performed
for the 3-state Potts model with site-dilution [4].

In this project we have performed intensive Monte Carlo studies of the 3D Ising and
4-state Potts models with bond -dilution [5]. We have determined the phase diagrams of
the diluted models, starting from the pure model limit down to the neighbourhood of
the percolation threshold, in very good agreement with a single-bond effective-medium
approximation. For the estimation of critical exponents in the Ising case [6], we have first
performed a finite-size scaling study, where we concentrated on three different dilutions
to check the stability of the disorder fixed point. We emphasize in this work the great
influence of the cross-over phenomena between the pure, disorder and percolation fixed
points which lead to effective critical exponents dependent on the concentration. In a
second set of simulations, the temperature behaviour of physical quantities has been
studied in order to characterize the disorder fixed point more accurately. In particular
this allowed us to estimate universal ratios of some critical amplitudes which are usually
more sensitive to the universality class than the critical exponents. Moreover, the question
of non-self-averaging at the disorder fixed point is investigated and compared with recent
results for the bond-diluted 4-state Potts model. We obtain very good agreement with
approximate analytical calculations by Aharony and Harris. Overall our numerical results
provide evidence that, as expected on theoretical grounds, the critical behaviour of the
bond-diluted model is indeed governed by the same universality class as the site-diluted
model.
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(2003).
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5.5.4 High-Temperature Series Expansions for Spin Glasses and
Disordered Magnets

M. Hellmund∗ and W. Janke
∗ Fakultät für Mathematik und Informatik

Despite considerable efforts there are still many open problems in the physics of disor-
dered systems. One alternative to large-scale numerical simulations are systematic series
expansions. Such expansions for statistical models defined on a lattice are a well-known
method to study phase transitions and critical phenomena [1]. The extension of this
method to disordered systems [2] demands the development of new graph theoretical and
algebraic algorithms.

Using the method of “star-graph expansion”, we calculate, e.g., free energies and
susceptibilities for disordered q-state Potts models on d-dimensional hypercubic lattices.
The probability distribution of couplings is parametrized by P (Jij) = pδ(Jij − J0) + (1−
p)δ(Jij − RJ0), which includes spin glasses, diluted ferromagnets, random-bond models
and transitions between them. First results for the random-bond Ising [3] and Potts [4]
model demonstrate the feasibility of the method to complement Monte Carlo [5] and field
theoretic studies of phase transitions in disordered systems.

For the bond-diluted 4-state Potts model in three dimensions, which exhibits a rather
strong first-order phase transition in the undiluted case, we obtained results [6] for the
transition temperature and the effective critical exponent γ as a function of p from anal-
yses of susceptibility series up to order 18. A comparison with recent Monte Carlo data
[5] shows signals for the softening to a second-order transition at finite disorder strength.
Further new results were also obtained for the three-dimensional bond-diluted resp. ran-
dom bond Ising model and the q → 1 percolation limit for different dimensionalities d
[7].
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5.5.5 Harris-Luck Criterion and Potts Models on Random Graphs

W. Janke, G. Kähler and M. Weigel

The Harris criterion judges the relevance of uncorrelated, quenched disorder for altering
the universal properties of systems of statistical mechanics close to a continuous phase
transition [1]. For this situation, as e.g., in the paradigmatic case of a quenched random-
bond or bond diluted model, a change of universal properties is expected for models with
a positive specific heat exponent α, i.e., the relevance threshold is given by αc = 0. For the
physically more realistic case of spatially correlated disorder degrees of freedom, Harris’
scaling argument can be generalised, yielding a shifted relevance threshold −∞ < αc ≤ 1
known as Luck criterion [2]. The value of αc depends on the quality and strength of
the spatial disorder correlations as expressed in a so-called geometrical fluctuation or
wandering exponent .

We consider the effect of a different, topologically defined type of disorder on the
universal behaviour of coupled spin models, namely the result of connectivity disorder
produced by placing spin models on random graphs. As it turns out, the Harris-Luck
argument can be generalised to this situation, leading to a criterion again involving a
suitably defined wandering exponent of the underlying random graph ensemble. Using a
carefully tailored series of finite-size scaling analyses, we precisely determine the wander-
ing exponents of the two-dimensional ensembles of Poissonian Voronöı-Delaunay random
lattices as well as the quantum gravity graphs of the dynamical triangulations model,
thus arriving at explicit predictions for the relevance threshold αc for these lattices [3].

As a result, for Poissonian Voronöı-Delaunay random graphs the Harris criterion αc =
0 should stay in effect, whereas for the dynamical triangulations the threshold is shifted
to a negative value, αc ≈ −2. The latter result is in perfect agreement with Monte Carlo
simulations of the q-states Potts model [4] as well as an available exact solution of the
percolation limit q → 1 [5]. For the Poissonian Voronöı-Delaunay triangulations, the Ising
case q = 2 with α = 0 is marginal and a change of universal properties cannot normally
be expected. The q = 3 Potts model with α = 1/3, on the other hand, should be shifted
to a new universality class. Following up on a first exploratory study for small graphs
[6], we performed high-precision cluster-update Monte Carlo simulations for rather large
lattices of up to 80 000 triangles to investigate this model. Astonishingly, however, the
(exactly known) critical exponents of the square-lattice q = 3 Potts model are reproduced
to high precision [7]. To clarify this situation, a generalised model introducing a distance
dependence of the interactions is currently under investigation.
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5.5.6 The F Model on Quantum Gravity Graphs

W. Janke, D. A. Johnston∗ and M. Weigel
∗ Heriot-Watt University, Edinburgh, Scotland

As an alternative to various other approaches towards a theory of quantum gravity, the
dynamical triangulations method has proved to be a successful discrete formulation of
Euclidean quantum gravity in two dimensions. There, the necessary integration over all
metric tensors as the dynamic variables of the theory, is performed as a discrete summation
over all possible gluings of equilateral triangles to form a closed surface of a given (usually
planar) topology. The powerful methods of matrix integrals and generating functions
allow for an exact solution of the pure gravity model in two dimensions. Furthermore,
matrix models can be formulated for the coupling of spin models of statistical mechanics
to the random graphs and some of them could be solved analytically. More generally, the
“dressing” of the weights of c < 1 conformal matter on coupling it to quantum gravity in
two dimensions is predicted by the KPZ/DDK formula [1], in agreement with all known
exact solutions.

One of the most general classes of models in statistical mechanics is given by Baxter’s
8-vertex model [2]. Thus its behaviour on coupling it to dynamical quadrangulations ,
i.e., surfaces built from simplicial squares, is of general interest. Although a solution of
special slices of this model could recently be achieved [3], the general model could not yet
be solved. Heading for computer simulations, one first has to ensure the correct handling
of the (quite unorthodox) geometry of four-valent graphs or quadrangulations in the dual
language. While simulations of three-valent graphs have already been extensively done,
the code for φ4-graphs had to be newly developed and tested [4]. Due to the fractal
structure of the graphs being described as a self-similar tree of “baby universes”, this
local dynamics suffers from critical slowing down. To alleviate the situation, we adapted
a non-local update algorithm known as “minBU surgery” [5].

Combining the developed techniques, we simulated the F model, a symmetric case of
the 8-vertex model, coupled to planar random φ4 graphs. On regular as well as random
lattices, this model is expected to exhibit a Kosterlitz-Thouless transition to an anti-
ferroelectrically ordered state [2, 3]. The numerical analysis of this model turned out
to be exceptionally difficult due to the combined effect of the highly fractal structure of
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the lattices and the presence of strong logarithmic corrections, leading to rather extreme
finite-size effects. Nevertheless, a scaling analysis of the staggered polarizability yields
results [6] in agreement with the predictions of Ref. [3] as far as the order of the transition
and the location of the transition point are concerned.
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5.5.7 Conformational Transitions of Lattice Heteropolymers

M. Bachmann, W. Janke, R. Schiemann and T. Vogel

The native conformation of a protein is strongly correlated with the sequence of amino
acid residues building up the heteropolymer. The sequence makes the protein unique
and assigns it a specific function within a biological organism. The reason is that the
different types of amino acids vary in their response to the environment and in their
mutual interaction. Since many diseases (e.g., Alzheimer’s, Creutzfeld-Jacob, type II
diabetes) are due to protein misfolds, it is an important task to reveal on what general
principles the folding process of a protein is based. Models differ extremely in their
level of abstraction, ranging from simple and purely qualitative lattice models to highly
sophisticated all-atom off-lattice formulations with explicit solvent that partially yield
results comparable with experimental data. Due to the enormous computational effort
required for simulations of realistic proteins, usually characteristic properties of a protein
with a given sequence are studied in detail. Much simpler, but by no means trivial, lattice
models enjoy a growing interest, since they allow a more global view on, for example, the
analysis of the relation between sequence and structure.

We focused ourselves on the study of thermodynamic properties of lattice proteins at
all temperatures. In particular, this includes the investigation of the transitions between
the different classes of states: lowest-energy (hydrophobic-core) states, compact globules,
and random coils. Since the ground-state–globule transition occurs at rather low temper-
atures, a powerful algorithm is required that in particular allows a reasonable sampling of
the low-lying energy states. To this end we combined multicanonical strategies [1] with
chain growth algorithms [2] to a new method [3]. We applied this method to different
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lattice proteins, modeled by the simplest lattice formulation for heteropolymers, the HP
model [4]. In this model, only two types of monomers enter, hydrophobic (H) and polar
(P) residues. The model is based on the assumption that the hydrophobic interaction is
one of the fundamental principles in protein folding. An attractive hydrophobic interac-
tion provides for the formation of a compact hydrophobic core that is screened from the
aqueous environment by a shell of polar residues.

For different sequences with lengths between 42 and 103 monomers, we analyzed in
detail the temperature-dependent behavior of radius of gyration, end-to-end distance, as
well as their fluctuations, and compared it with the specific heat in order to elaborate
relations between characteristic properties of these curves (peaks, “shoulders”) and con-
formational transitions not being transitions in a strict thermodynamic sense due to the
impossibility to formulate a thermodynamic limit for proteins. Therefore, we identified
temperature regions, where global changes of protein conformations occur. These tran-
sition regions separate “phases”, where random coils, maximally compact globules, or
states with compact hydrophobic core dominate. As an interesting by-product, we not
only confirmed the known global-minimum energies for these examples, but we even found
a new minimum for the 103mer being the longest sequence under consideration [3].

bad solvent poor solvent good solvent

In another project [5] we exactly analyzed the combined space of sequences and con-
formations for proteins on the simple cubic lattice for HP-type models that differ in the
contact energy between hydrophobic and polar monomers. Since there were only a few
known exact results for heteropolymers in 3D, in particular on compact cuboid lattices,
we generated by exact enumeration the sets of designing sequences (i.e. sequences with
nondegenerate ground state) and native conformations on simple cubic lattices. We stud-
ied, how their properties, measured, e.g., in terms of quantities like end-to-end distance,
radius of gyration, designability, etc., differ from the bulk of all possible sequences and all
self-avoiding conformations, respectively. We confirmed that the ground-state conforma-
tions are very compact, but not necessarily maximal compact. We studied also energetic
thermodynamic properties, in order to investigate how characteristic the low-temperature
behavior of designing compared to non-designing sequences is and found that designing se-
quences show up a pronounced low-temperature peak in the specific heat being related to
a conformational transition between low-energy states with hydrophobic core and highly
compact globules. While designing sequences behave similarly for very low temperature,
nondesigning sequences react quite differently on changes of the temperature, over the
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entire range of temperatures.
We also investigated the HP model on more general lattices, e.g. the triangular lattice

in 2D and the face-centered cubic (fcc) lattice in 3D [6]. Comparing for given sequences
the results obtained on the fcc lattice with results from considerations on the simple cubic
lattice, it turned out that there was in most cases no qualitative coincidence. In particular,
for exemplified sequences exhibiting a distinct “three-phase” behavior on the simple cubic
lattice, we did not find a clear indication for the low-temperature transition between
globules and hydrophobic-core conformations on the fcc lattice. Consequently, ground-
state properties and thermodynamic properties for given sequences strongly depend on
the type of the lattice used. This does not render lattice models completely irrelevant for
qualitative studies of heteropolymers, but it shows that, just for this reason, HP proteins
on the simplest lattices will not adequately describe properties of a realistic amino acid
sequence that was translated into the corresponding HP sequence.
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5.5.8 Thermodynamic Properties of Simple Off-Lattice Models
for Proteins

H. Arkın∗, M. Bachmann and W. Janke
∗ Hacettepe University, Ankara, Turkey

The understanding of protein folding is one of the most challenging objectives in
biochemically motivated research. Although the physical principles are known, the com-
plexity of proteins as being macromolecules consisting of numerous atoms, the influence
of quantum chemical details on long-range interactions as well as the role of the solvent,
etc. makes an accurate analysis of the folding process of realistic proteins extremely dif-
ficult. Therefore, one of the most important questions in this field is how much detailed
information can be neglected to establish effective models yielding reasonable, at least
qualitative, results that allow for, e.g., a more global view on the relationship between the
sequence of amino acid residues and the existence of a global, funnel-like energy minimum
in a rugged free-energy landscape.

Within the past two decades much work has been done to introduce minimalistic
models based on general principles that are believed to primarily control the structure
formation of proteins. One of the most prominent examples is the HP model of lattice
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proteins [1] which has been exhaustively investigated without revealing all secrets, despite
its simplicity. The only explicit interaction is between non-adjacent but next-neighbored
hydrophobic monomers. This interaction of hydrophobic contacts is attractive to force
the formation of a compact hydrophobic core which is screened from the (hypothetic)
aqueous environment by the polar residues.

A manifest off-lattice generalization of the HP model is the AB model [2], where the
hydrophobic monomers are labeled by A and the hydrophilic ones by B. The contact in-
teraction is replaced by a distance-dependent Lennard-Jones type of potential accounting
for short-range excluded volume repulsion and long-range interaction, the latter being
attractive for AA and BB pairs and repulsive for AB pairs of monomers. An additional
interaction accounts for the bending energy of any pair of successive bonds. This model
was first applied in two dimensions [2] and generalized to three-dimensional AB proteins,
partially with modifications taking into account the additional torsional degree of freedom
of each bond [3].

We have studied thermodynamic and ground-state properties of known AB sequences
for two representations [2, 3] of the AB model. In order to more accurately resolve the
low-temperature behavior we applied a multicanonical Monte Carlo algorithm with an
appropriate update mechanism, which enabled us to sample the density of states over
more than 70 orders of magnitude [4]. This allowed us to calculate fluctuating quantities
such as the specific heat with very high accuracy for almost all temperatures. We also
obtained with this method a very good estimate for the ground-state energies. These
values are in very good agreement with results achieved by means of the energy landscape
paving (ELP) minimizer [5], which was designed just for this purpose.
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5.5.9 Phase Transitions in Ginzburg-Landau Theory

E. Bittner, W. Janke, A. Krinner and S. Wenzel

Scalar fields with n components and a fourth-order O(n)-symmetric quartic self-interaction
are so far the best understood examples of systems, whose second-order phase transi-
tions can be treated with field-theoretic techniques [1, 2]. Universality ensures that spin
models which describe only directional fluctuations show the same critical properties as
scalar fields with n ≥ 2 components, and the precise reason for this can easily be un-
derstood [3]. In particular, this equivalence holds for the superfluid phase transition
which can be described either by a directional XY model or by an O(2)-symmetric scalar
field theory, whose Hamiltonian is of the Ginzburg-Landau form with a complex field
ψ(�r) = |ψ(�r)|eiφ(�r). Therefore the model can equivalently be represented as a partition
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function of a dual theory where the elementary excitations are closed vortex lines, i.e.
loops. The loops of the dual theory may therefore play an important role in determining
the properties of the phase transition. A seemingly natural approach to study the vortex
degrees of freedom is to decompose every spin configuration generated in a lattice Monte
Carlo simulation [4] into a number of vortex loops. The hope is then that the transition
will be signalized by a non-zero probability for finding vortex loops that extend through
the whole system [5], a phenomenon which is often called percolation.

Percolation has been used to study phase transitions in various different theories.
From studies of the Ising model, where a different kind of percolation may occur, related
to spin clusters instead of vortex lines, it is known that one has to be quite careful with the
interpretation [6]. In discussing the phase transition of the Ginzburg-Landau theory, we
study a geometrically defined vortex loop network as well as the magnetic properties of the
system in the vicinity of the critical point. Using high-precision Monte Carlo techniques we
consider an alternative formulation of the geometrical excitations in relation to the global
O(2)-symmetry breaking, and check if both of them exhibit the same critical behaviour
leading to the same critical exponents and therefore to a consistent description of the
phase transition. Different percolation observables are taken into account and compared
with each other.
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5.5.10 Equilibrium Crystal Shapes in Three Dimensions

E. Bittner, W. Janke and A. Nußbaumer

The free energy of the three-dimensional Edwards-Anderson Ising model in the low tem-
perature phase shows a multi-valley structure. Multicanonical simulations, e.g. for the
overlap parameter, were expected to remove these valleys and to lead to a random walk
behaviour in the corresponding observable. In fact there are still jumps in the time series
which were attributed to so-called “hidden barriers”. Recently, Neuhaus and Hager [1]
explained such barriers in the magnetisation M for the much simpler case of the two-
dimensional Ising model. Based on the analytic work of Leung and Zia [2], they identified
a geometrically induced first-order transition from a droplet to a strip domain and showed
that even a perfect multimagnetic simulation operating with the optimal weights needs ex-
ponential time to overcome the associated free energy barrier. To obtain more qualitative
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insights, we determined directly the anisotropy of a configuration by measuring a struc-
ture function. Simulating different system sizes with Kawasaki dynamics (M = const.),
the scaling of the anisotropy leads to a value for the barrier height in good agreement with
the theoretical prediction (see Fig. 1). By generalising these considerations to the case
of the three-dimensional Ising model, new transitions could be identified analytically and
verified numerically, and the crystal shapes emerging during the transition were visualised.
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Fig. 1: Linear fit to ln(Pmax/Pmin) in the range L = 30 to L = 40. The measured value
α = 1.30 ± 0.01 is to be compared with the analytic value [2] of α = 1.35.
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5.5.11 Geometrical Approach to Phase Transitions

W. Janke and A. M. J. Schakel

The geometrical approach to phase transitions is an exciting research topic in contempo-
rary physics. The prototype of this approach is percolation theory, describing clusters of
(randomly) occupied sites on a lattice. The fractal structure of these geometrical objects
and whether or not a cluster percolates the lattice are central topics addressed by the
theory. Percolation theory is easily adapted to describe other geometrical objects such
as lines and (hyper)surfaces as well. Typical line objects featuring in phase transitions
that can be described in this way are, for example, (i) vortex lines in systems with spon-
taneously broken global U(1) or local gauge symmetries, (ii) worldlines in Bose-Einstein
condensates, and (iii) graphs in high-temperature representations of spin models.

(i) Because of topological constraints, vortices generally form closed loops. Whereas in
the broken-symmetry phase only finite vortex loops are present, at the critical point, loops
of all sizes appear. This vortex proliferation is in complete analogy to what happens with
clusters at the percolation threshold. The disordering effect of the proliferating vortices
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destroys superfluidity in superfluids, and leads to charge confinement in certain gauge
theories.

(ii) Boson worldlines at finite temperature also form closed loops in imaginary time.
Feynman’s theory of Bose-Einstein condensation asserts that upon lowering the temper-
ature, small loops describing single particles hook up to form larger exchange rings, so
that the particles become indistinguishable. At the critical temperature, again as in per-
colation phenomena, worldlines proliferate and loops of arbitrary size appear, signalling
the onset of Bose-Einstein condensation.

(iii) The high-temperature representation of spin models can be visualized by closed
graphs on the lattice (see Fig. 1), making these models eligible to a geometrical descrip-
tion. In this project, the fractal structure of two-dimensional spin models was investigated
and a close connection between different models established. To support our theoretical
findings, the high-temperature representation of the Ising model was simulated by means
of a Metropolis plaquette update. It was shown that (a) large graphs are exponentially
suppressed in the high-temperature phase, and that (b) graphs percolate the lattice and
proliferate precisely at the thermal critical point. From the percolation strength (defined
as the number of bonds in the largest graph) and the average graph size, the fractal di-
mension of the graphs is extracted through finite-size scaling [1]. The resulting value was
found to agree with theoretical predictions [2].

Fig. 1. Typical graph configurations generated on a 16 × 16 square lattice with periodic
boundary conditions in the high- (left panel) and low-temperature (right panel) phase of
the two-dimensional Ising model.
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5.5.12 Information Geometry and Phase Transitions

W. Janke, D. A. Johnston∗, R. Kenna∗∗ and R. P. K. C. Malmini∗∗∗
∗ Heriot-Watt University, Edinburgh, Scotland, ∗∗ Coventry University, England,
∗∗∗ University of Sri Jayewardenepura, Sri Lanka

Various authors, motivated by ideas in parametric statistics [1], have discussed the ad-
vantages of taking a geometrical perspective on statistical mechanics [2]. The “distance”
between two probability distributions in parametric statistics can be measured using a
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geodesic distance which is calculated from the Fisher information matrix for the system.
To this end the manifold M of parameters is endowed with a natural Riemannian metric,
the Fisher-Rao metric [1]. For a spin model in field, M is a two-dimensional manifold
parametrised by (θ1, θ2) = (β, h). The components of the Fisher-Rao metric take the
simple form Gij = ∂i∂jf in this case, where f is the reduced free energy per site and
∂i = ∂/∂θi. A natural object to consider in any geometrical approach is the scalar or
Gaussian curvature R which in various two-parameter calculable models has been found to
diverge at the phase transition point βc according to the scaling relation R ∼ |β−βc|α−2,
where α is the usual specific heat critical exponent. For spin models the necessity of cal-
culating in non-zero field has limited analytic consideration to 1D, mean-field and Bethe
lattice Ising models [3].

In this project we used the exact solution in field of the Ising model on an ensemble
of fluctuating planar random graphs (where α = −1, β = 1/2, γ = 2) [4] to evaluate
the scaling behaviour of the scalar curvature explicitly, and find R ∼ |β − βc|−2 [5]. The
apparent discrepancy with the general scaling postulate is traced back to the effect of a
negative α [5]. As anticipated, the same effect is found [6] in exact calculations for the
three-dimensional spherical model, which was solved (in field) in the classic Berlin and Kac
paper [7] and shares the same critical exponents as the Ising model on two-dimensional
planar random graphs. We mainly concentrated on the 3D case, but also discussed other
dimensions [6], in particular the mean-field like behaviour which sets in at D = 4.
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Talks and Posters 2003

Michael Bachmann:

1. Energy Density of HP Lattice Proteins ,
(with Janke, W.) 28th Conference of the Middle European Cooperation in Statistical
Physics (MECO28), Saarbrücken, March 20–22 (P).

2. Energy Density of Heteropolymers ,
DPG-Frühjahrstagung Dresden, March 24–28 (T).

3. Multicanonical Chain Growth Algorithm,
Seminar Theory of Complex Systems, John von Neumann Institute for Computing
(NIC), Forschungszentrum Jülich, April 24 (T).

4. Density of States for HP Lattice Proteins ,
(with Janke, W.) Workshop on Random Geometry and EU-Network Meeting, Krakow,
Poland, May 15–17 (P).

5. Energetic Properties of Heteropolymers,
(with Janke, W.) 2nd Day of Biotechnology, Leipzig, May 21 (P).

6. Exact Analysis of Designing Sequences ,
(with Schiemann, R.; Janke, W.) 2nd Day of Biotechnology, Leipzig, May 21 (P).
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7. Generalized-Ensemble Simulations of Off-Lattice Heteropolymers,
Computational Physics Workshop (CompPhys03), Leipzig, December 4–5 (T).

Elmar Bittner:

1. Nature of Phase Transitions in a Generalized Complex |ψ|4 Model ,
(with Janke, W.) 28th Conference of the Middle European Cooperation in Statistical
Physics (MECO28), Saarbrücken, March 20–22 (P).

2. Zum Phasenübergang in der komplexen |ψ4| Theorie,
DPG-Frühjahrstagung, Arbeitskreis Festkörperphysik, TU Dresden, March 24–28
(T).

3. Generalized Comlex ψ4 Model ,
(with Janke, W.) Workshop on Random Geometry and EU-Network Meeting, Krakow,
Poland, May 15–17 (P).

4. Phase Structure of a Generalized ψ4 Model ,
Computational Physics Workshop (CompPhys03), Leipzig, December 4–5 (T).

Meik Hellmund:

1. Star-Graph Expansions for Bond-Diluted Potts Models,
(with Janke, W.) DPG-Frühjahrstagung, Arbeitskreis Festkörperphysik, TU Dres-
den, March 24–28 (P).

Wolfhard Janke:

1. Phasenübergänge in ungeordneten Ferromagneten,
Theorie-Kolloquium, Universität Mainz, January 16 (T).

2. Partition Function Zeroes for Fluctuating Graphs,
Seminaire LPM, Université Henri Poincaré, Nancy, France, January 23 (T).

3. Quenched Disorder in Three-Dimensional Ferromagnets,
16th Workshop on Recent Developments in Computer Simulation Studies in Con-
densed Matter Physics, The University of Georgia, Athens, Georgia, USA, February
24–28 (T).

4 Information Geometry and Phase Transitions,
(with Johnston, D.A.; Kenna, R.; Malmini, R.P.K.C.) 28th Conference of the Middle
European Cooperation in Statistical Physics (MECO28), Saarbrücken, March 20–22
(P).

5. Phase Transitions of the Diluted 3D 4-State Potts Model ,
DPG-Frühjahrstagung, Arbeitskreis Festkörperphysik, TU Dresden, March 24–28
(T).

6. Quenched Disorder in Ferromagnets,
invited talk, Yalelat03 – 13. Workshop on Lattice Field Theory, Yale University,
New Haven, USA, May 1–3 (T).



304 5. INSTITUTE FOR THEORETICAL PHYSICS

7. Simulating Rare Events in Spin Glasses ,
invited talk, Workshop on Random Geometry and EU-Network Meeting, Krakow,
Poland, May 15–17 (inv. T).

8. Quenched Connectivity Disorder ,
invited talk, Atelier Nancy, Université Henri Poincaré, Nancy, Frankreich, May 21–
22 (inv. T).

9. Ground States of Lattice Proteins ,
invited talk, Dagstuhl-Seminar on New Optimization Algorithms in Physics , Wadern,
September 14–19 (inv. T).

10. Overcoming Slow Dynamics in Generalized Ensemble Simulations ,
invited talk, Workshop NesPhy03, MPI-PKS Dresden, September 22 – October 10
(inv. T).

Andreas Nußbaumer:

1. Parallel Tempering at Second-Order Phase Transitions,
(with Bittner, E.; Janke, W.) DPG-Frühjahrstagung, Arbeitskreis Festkörperphysik,
TU Dresden, March 24–28 (P).

2. Ising Droplets in Action,
Computational Physics Workshop (CompPhys03), Leipzig, December 4–5 (T).

Adriaan Schakel:

1. Physics in Geometrical Potts Clusters,
Computational Physics Workshop (CompPhys03), Leipzig, December 4–5 (T).

Reinhard Schiemann:

1. Exact Statistical Analysis of Native Ground States of Lattice Proteins,
(with Bachmann, M.; Janke, W.) DPG-Frühjahrstagung, Arbeitskreis Festkörperphysik,
TU Dresden, March 24–28 (P).

Thomas Vogel:

1. Monte Carlo Simulations of the 2D Ising Model with Brascamp-Kunz Boundary
Conditions ,
(with Krinner, A.; Janke, W.) DPG-Frühjahrstagung, Arbeitskreis Festkörperphysik,
TU Dresden, March 24–28 (P).

Martin Weigel:

1. Effects of Connectivity Disorder on the Potts Model ,
(with Janke, W.) 28th Conference of the Middle European Cooperation in Statistical
Physics (MECO28), Saarbrücken, March 20–22 (P).
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2. Effects of Connectivity Disorder on the Potts Model ,
(with Janke, W.) DPG-Frühjahrstagung, Arbeitskreis Festkörperphysik, TU Dres-
den, March 24–28 (P).

3. Effects of Connectivity Disorder on the Potts Model ,
(with Janke, W.) Workshop on Random Geometry and EU-Network Meeting, Krakow,
Poland, May 15–17 (P).

4. The Harris-Luck Criterion for Random Lattices,
Institute for Theoretical Physics, University of Leipzig, October 8 (T).

5. The Harris-Luck Criterion for Random Lattices,
Condensed Matter Theory Seminar, University of Waterloo, Canada, November 4
(T).

6. Harris Criterion and Correlated Disorder from Random Graphs,
Emerging Materials Knowledge Meeting, University of Waterloo, Canada, December
18 (T).

Andreas Wernecke:

1. Q-state Potts Models on Quenched Random Planar φ3 Graphs,
(with Janke, W.) DPG-Frühjahrstagung, Arbeitskreis Festkörperphysik, TU Dres-
den, March 24–28 (P).

5.5.17 Graduations

Diploma and Master Theses

1. Andreas Nußbaumer, Rare-Event Sampling of Spin Glasses, Diploma Thesis, April
2003.

2. Reinhard Schiemann, Exact Enumeration of 3D Lattice Proteins , Diploma Thesis,
September 2003.

3. Sandro Wenzel, Monte Carlo Simulations of the 3D Ginzburg-Landau Model with
Compact U(1) Gauge Field , Master Thesis, December 2003.

4. Thomas Vogel, HP-Proteine auf verallgemeinerten Gittern und Homopolymerkol-
laps , Diploma Thesis, January 2004.

5. Axel Krinner, Nature of Phase Transitions in a Generalized Complex Ginzburg-
Landau, Diploma Thesis, March 2004.

5.5.18 Guests

Short-term guests

1. Dr. Pai-Yi Hsiao, Laboratoire de Physique Théorique de la Matière Condensée,
University Paris 7, France,
NTZ-Kolloquium, January 9, 2003: Critical Behavior of the Ferromagnetic Ising
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Model on the Fractals ,
Period: January 8–11, 2003.

2. Prof. Dr. Yuko Okamoto, Dept. of Theoretical Studies, Institute for Molecular Sci-
ence, Okazaki, Aichi 444-8585, Japan,
TKM-Seminar, May 20, 2003: Protein Folding Simulations by Generalized-Ensemble
Algorithms ,
Period: May 19–21, 2003.

3. Prof. Dr. Royce Zia, Virgina Tech. Univ., USA,
NTZ-Kolloquium, November 27, 2003: Non-Equilibrium Statistical Mechanics ,
Period: November 26–28, 2003.

4. Prof. Dr. Bernd A. Berg, Florida State University, Tallahassee, USA,
NTZ-Kolloquium, December 18, 2003: A Biased Metropolis Sampling Method for
Peptides ,
Period: December 16–19, 2003.

Long-term guests

1. Adriaan Schakel (FU Berlin): June–July 2003.

2. Handan Arkın (Hacettepe University, Ankara, Turkey): July–October 2003.

3. Thomas Neuhaus (Univ. Bielefeld): November–December 2003.

4. Adriaan Schakel (FU Berlin): November–December 2003.

5. Thomas Neuhaus (Univ. Bielefeld): January–February 2004.
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5.6 Molecular Dynamics/Computer Simulations

5.6.1 Introduction

Using methods of statistical physics and computer simulations we investigate classical
many-particle systems interacting with interfaces. One aim of the research in our depart-
ment is to built up a bridge between theoretical and experimental physics.

By means of analytical theories of statistical physics and computer simulations (Molec-
ular dynamics, Monte Carlo procedures, percolation theories) using modern workstations
and supercomputers we examine subjects for which high interest exists in basic research
and industry as well. The examinations involve transport properties (diffusion of guest
molecules) in zeolites and the structural and phase behaviour of complex fluids on bulk
conditions and in molecular confinements. Especially we are interested to understand

• the diffusion behaviour of guest molecules in zeolites in dependence on thermody-
namic parameters, steric conditions, intermolecular potentials and the concentration
of the guest molecules,

• structure and phase behaviour of dense fluids in pores, slits and model membranes
in dependence on geometric and thermodynamic conditions

• and the migration of waste in deposits by use of percolation theories

in microscopic detail and to compare the results with experimental data. The use of a
network of PC’s and workstations (Unix, Linux, Windows), the preparation and appli-
cation of programs (Fortran, C, C++) and the interesting objects (zeolites, membranes)
give excellent possibilities for future careers of undergraduates, graduate students and
postdocs.

Our research in 2003 was part of several national and international programs (DFG
- Schwerpunktprogramm 1155, an International Research Graduate Training program a
joint research project DFG/TRF-Thailand, a joint research project DAAD/TRF-Thailand,
and a NATO grant). We have a close collaboration with the Institute of Experimental
Physics I (Physics of Interfaces and Biomembranes) of Leipzig University and many insti-
tutions in several countries (University of California, Irvine; University of Massachusetts,
Amherst; University of Guelph, Canada; Athens/Patras; Charles University Prague; Sas-
sari, Italy; Bangkok; Bordeaux; Warschau; Wien; Regensburg; MPI Mainz; Bundesanstalt
für Geologie und Rohstoffe (BGR) Hannover).

5.6.2 Investigation of diffusion mechanisms of non-spherical
molecules in cation free zeolites

A. Schüring, S. M. Auerbach∗, S. Fritzsche, R. Haberlandt
∗ University Amherst, Massachusetts, USA

Explaining a surprising temperature dependence of the self diffusion coefficient D of
ethane in the cation free LTA zeolite it could be shown that this dependence is caused by
an entropic barrier [1]. Random walk treatment reduced the description of the underlying
diffusion process on the essentials and could explain the effect in terms of jump rates
that can be calculated analytically by use of the transition state theory or evaluated from
Molecular Dynamics (MD) computer simulations. Investigations of the local free energy,
defined as in [2], which is also the potential of mean force, show that the temperature
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dependence of the jump rates is in some cases dominated by entropic barriers [3,4]. These
investigations are now extended to other systems.
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Fig. 1: The local free energy for a methane molecule in the LTA zeolite at positions
along a line through the center of a window connecting two cavity centers for different
temperatures.

From the Fig. 1 it can clearly be seen that for higher temperatures a barrier for the
methane molecule appears in the window.

5.6.3 Analytical Theory and MD Simulations of special effects
connected with diffusion of guest molecules in channels

S. Fritzsche, A. Schüring with J. Kärger∗ and S. Vasenkov∗
∗ Institute for Experimental Physics I, University Leipzig
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Fig. 2: Channel structure of Silicalite–1.

In this project effects of correlated anisotropic diffusion and effects in the transition region
channel / gas phase are investigated.

Summing up infinite series of transition probabilities between intersections in silacalite–
1 it has been shown, that in the case of uncorrelated movements, which is a good approx-
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imation in many cases for small molecules, the elements of the diffusion tensor obey the
relationship [5]

c2

Dz

=
a2

Dx

+
b2

Dy

(5.1)

with a, b and c denoting the unit cell extensions in x–, y– and z–direction. Deviations
from eq. (5.1) have been quantified by introducing a memory parameter β in ref. [6]

β =
c2/Dz

a2/Dx + b2/Dy

. (5.2)

Such processes are examined with inclusion of correlations e.g. in [7, 8, 9].
If channels of zeolites end at the zeolite surface, where the exchange of guest molecules

with the gas phase takes place, pecularities with respect to diffusion have been observed.
There is a region within the channel close to the end, where a special diffusion regime rules
the migration of guest molecules [10]. These effects are investigated by analytical calcu-
lations in connection with dynamical Monte Carlo simulations and Molecular Dynamics
simulations.

5.6.4 Investigation of the influence of zeolite lattice vibrations
and molecule vibrations on the diffusion of guest molecules

S. Fritzsche, R. Haberlandt, M. Wolfsberg∗
∗ UCI, Institute for Surface and Interface Science, Irvine, CA 92697-2025, USA

In the literature a strong influence of the lattice vibrations on the diffusion of methane the
cation free A zeolite was found in [11, 12]. But our investigations showed by Molecular
Dynamics Computer Simulations that the diffusion coefficient of the guest molecules was
nearly the same for the rigid and the vibrating lattice for this system [13] and we gave an
explanation of the discrepancy. This earlier result could be confirmed and understood in
more detail by investigating the equilibration of kinetic energy differences in small zeolite
cavities [14] using e.g. the one particle kinetic energy autocorrelation function.

The investigations have been extended to methane in silicalite–1 and the influence of
the molecule vibrations has now been included as well. It could be shown that for the
diffusion of methane in silicalite–1, contrary to the cation free LTA zeolite, the lattice
vibration have some influence on the value of D while the influence of the molecule
vibrations is negligible [15].
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5.6.5 Water in chabazite

S. Jost, S. Fritzsche, R. Haberlandt, Ph. A. Bopp∗
∗ University of Bordeaux, France

Fig. 3: Left: Mean diffusion coefficient versus Loading (molecules per unit cell) at
T = 600 K. Right: Snapshot from the MD-Simulation. Cations are bright, water molecules
are represented by small ticks.

In this project methodical developments and Molecular Dynamics Computer Simulations
are combined. The simulation of this diffusional process [16, 17] turned out to be at
the limit of the computational capabilities, so we had to increase the temperature up to
T = 600 K, to get mean square displacements, which are large enough, to evaluate diffu-
sion coefficients. At this temperature the system shows a quite uncommon dependence
on the loading (Fig. 3): For the almost dehydrated zeolite with only one quarter of the
full loading, there is a very slow diffusion. Then the diffusion coefficient increases with
increasing loading, up to a maximum value for 75% of the full loading. Then it decreases
with further increasing loading.

This abnormal behaviour can be explained by the knowledge about the adsorption
places. At approximately half of the maximum loading, almost all preferred places in
the hydration shells of the cations are filled up. Therefore, at higher loadings there are
some water molecules which are only loosely bound and relatively free to move. With
further increase in the loading, the fraction of mobile molecules increases, leading to more
diffusional motion, but with more molecules, the number of potential collision partners
increases as well, which limits the increase of D and dominates for the highest loadings.
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5.6.6 How do guest molecules enter zeolite pores? Quantum
Chemical calculations and classical MD simulations

R. Haberlandt, S. Fritzsche, C. Bussai∗, S. Hannongbua∗
∗ Chulalongkorn University, Bangkok

This research is based on a joint project of the DFG (Germany) and the TRF (Thai-
land). After water in silicalite-1 was examined in cooperation with experimentally work-
ing physicists [18] these investigations are now extended to the surface. Fitted potentials
developped from ab inition calculations for several thousand configurations of an water
molecule in silicalite have been calculated [19, 20, 21]. This potential has then been used
in Molecular Dynamics simulations [18, 20, 22, 23]. For the water/water interaction a
well established potential from the literature has been used [24]. The investigations have
also been started for methane in silicalite–1 [25] and on its external surface.

5.6.7 Force Field Calculation and MD–Simulation of Pentane in
Silicalite–1

S. Fritzsche, A. Loisruangsin∗, S. Hannongbua∗
∗ Chulalongkorn University, Bangkok

This research is based on a joint project of the DAAD (Germany) and the TRF (Thai-
land). Force fields for the pentane/pentane interaction and the interaction of pentane
with the silicalite–1 lattice are developped. This is done by fitting potential parameters
to the results of MP2 ab initio calculations. Different from most ab initio calculations the
present ones are not only done on the Hartree–Fock level. In Hartree–Fock calculations
the electron correlations are neglected hence, the dispersive forces (Van der Waals inter-
actions) are not reproduced. Instead, in the more accurate MP2 calculations these effects
are taken into account. In comparison to several well known force fields in the literature
the newly developped potentials show better agreement with the ab initio results [26].
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5.6.8 Statistical mechanics of associating fluids: Chemical po-
tentials, phase equilibria, and critical properties

H. L. Vörtler, I. Nezbeda∗, M. Kettler∗∗
∗ Charles University, Prague, ∗∗ Frankfurt

The project is part of a long-term research program dealing with the equilibrium statisti-
cal mechanics of molecular and associating fluids on both bulk conditions and geometrical
restrictions using Monte Carlo simulations and analytical (perturbation) theories.
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We discuss recent Monte Carlo computer simulation techniques to calculate efficiently
chemical potentials of short-ranged primitive models of associating (water-like) fluids
[27], where the conventional Widom test-particle method fails because of the very low
insertion probability of a test particle at moderate to high densities. Therefore, gradual
particle insertion [28] and monomer insertion techniques [29] are used to overcome these
problems.

Novel simulation results for chemical potential versus density isotherms of primitive
water models which show typical van der Waals loops at sub-critical temperatures are use
to estimate the densities of the coexisting fluid phases by means of a Maxwell equal-area
construction [30].

From the vapour-liquid equilibrium data we calculate the critical temperatures and
the critical densities of primitive water using classical scaling theory arguments.

The obtained chemical potentials and coexistence properties are pseudo-experimental
reference data for analytical theories of associating fluids. Fields of applications are
aqueous solutions, water confined to microporous media or thin water films in biological
systems. The project is part of an international collaboration.
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5.6.9 Cavity Distribution Functions and Solubility of Fused Hard
Sphere Fluids

H. L. Vörtler and W. R. Smith∗
∗ University of Guelph, Ontario, Canada

We continue our studies of the molecular structure of bulk and inhomogeneous fluids in
terms of cavity distribution functions [31] which are of special interest for both developing
analytical closures of the BGY integral equation hierarchy [32] connecting cavity distri-
bution functions of different order and calculating efficiently excess chemical potentials
and background correlation functions.

On the basis of novel virtual particle/cavity insertion simulation techniques we have
calculated efficiently cavity pair distribution functions of confined hard-sphere systems us-
ing virtual particle/cavity insertion moves in a canonical ensemble. Extensive simulation
studies have been performed for conditional distribution functions of pairs of hard-sphere
cavities in fluids confined to slit-like micropores and thin films. The results – which rep-
resent the first quantitative data of such functions available – are summarized in papers
[33, 34].

The next step of the project – which is at present under consideration – deals with
the extension to m-body cavity functions, where the corresponding cavity is a fused-hard-
sphere (FHS) cavity (molecule) of m HS cavities, the individual spheres of which may be
overlapping. The corresponding m-particle cavity distribution function n(1,2, . . . ,m) is
the probability that the FHS cavity can be inserted into the system, and is related to its
dimensionless excess chemical potential at infinite dilution, βµe(1,2, . . . ,m), via

n(1,2, . . . ,m) = exp[−βµe(1,2, . . . ,m)] (5.3)

βµe(1,2, . . . ,m) is equivalent to the dimensionless excess chemical potential at infinite
dilution of a molecule corresponding to the m-particle cavity in the fluid. βµe(1,2, . . . ,m)
is directly related to the solubility of the corresponding FHS-molecule in a hard sphere
fluid at infinite dilution.

Therefore estimations of m-body cavity functions in geometric restricted fluids provide
a direct route to study solubility and sorption phenomena of polyatomic molecules in
confined fluids on a molecular level.

The project is part of an international collaboration.

References
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in MFI–Type Zeolites by MD Simulation J. Phys. Chem. B 107, 3515 (2003).

3) W.R. Smith and H.L. Vörtler, Computer Simulation of Cavity Pair Distribution
Functions of Hard Spheres in a Hard Slit Pore, Mol. Phys. 101,805 (2003).

4) H. L. Vörtler, M. Kettler, Computer Simulations of chemical potentials of primitive
models of water, Chem. Phys. Letters 377, 557 (2003).
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chemical reaction in a dilute gas, Acta Phys. Polon. B. 34, 3607 (2003)
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Experiments, 31th October 2003 Rauischholzhausen / Gießen, Germany (2003).
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2. H. L. Vörtler MC simulation of associating fluids: Chemical potentials, phase equilib-
ria, and critical properties, 4rd Workshop on Computational Physics CompPhys03,
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3. S. Fritzsche, About Some Notions of Statistical Physics, invited lecture at the Third
Mahidol Summer School on Advanced Research (MSAR2003), Bangkok, February
27th 2003

4. S. Fritzsche, Classical Molecular Dynamics Computer Simulations, invited lecture at
the Third Mahidol Summer School on Advanced Research (MSAR2003), Bangkok,
February 28th 2003

5. S. Fritzsche and A. Schüring, A Random Walk Model for Ethane Self–Diffusion in
the Cation–Free LTA Zeolite, Chemistry Departement of the Chulalongkorn Univer-
sity, Bangkok, March 7th 2003

5.6.13 Graduations

A. Schüring
Molekulardynamik-Simulationen und Sprungmodelle zur Diffusion in Zeolithen
PhD thesis, University of Leipzig, 2003. date of defense July 2nd 2003, academic title
acknowledged August 11th 2003.
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5.7 Statistical Physics

5.7.1 Introduction

We work on the connections of statistical mechanics to quantum field theory, on the
mathematical and physical aspects of renormalization group (RG) theory and on its ap-
plications to condensed matter physics, and on quantum kinetic theory. Our methods
range from mathematical proofs to computational solution of large differential equations.

One of the central topics in our current research is an RG approach to many–fermion
systems, which is used to investigate the properties of the Hubbard model in the parameter
range relevant for high–temperature superconductivity. The RG method applied here is
an exact functional transformation of the action of the system, which leads to an infinite
hierarchy of equations for the Green functions. Truncations of this hierarchy are used in
applications. In a number of nontrivial cases, this truncation can be justified rigorously,
so that the method lends itself to mathematical studies. These mathematical aspects are
also under investigation.

At present, we have collaborations with ETH Zurich, the Max–Planck Institute for
Solid State Research in Stuttgart, the University of British Columbia, Vancouver, the
University of Munich, and Stanford University.

5.7.2 Fermi surfaces with singularities

J. Feldman, M. Salmhofer, E. Trubowitz

Fermi surfaces with van Hove singularities are interesting both from the point of view of
applications (high–temperature superconductors) and from the theoretical point of view.
The logarithmic singularity in the density of states caused by the zero of the bare Fermi
velocity gives rise to new marginally relevant terms in the RG equation [FRS]. In this
situation, the renormalization of the Fermi velocity and the quasiparticle weight differ
strongly. We have an all–order proof of C1 regularity of the Fermi velocity (to appear).
Work on the question of an inversion theorem generalizing that proven in [FST] for regular
Fermi surfaces is in progress.

[FRS] N. Furukawa, T.M. Rice, M. Salmhofer, Phys. Rev. Lett. 81 (1998) 3195–3198

[FST] J. Feldman, M. Salmhofer, E. Trubowitz, Comm. Pure Appl. Math. 53 (2000)
1350–1384

5.7.3 Fermi Surface Flows

W. Pedra, M. Salmhofer

The method of posing counterterms in constructive field theoretic studies of two–dimensional
fermion systems leads to the inversion problem which has been solved to all orders in per-
turbation theory [FST2] but not yet nonperturbatively. We introduce a new RG flow
where the Fermi surface is adjusted dynamically in the flow. This allows us to give a non-
perturbative construction of two–dimensional Fermi systems with a regular Fermi surface
at the temperature above the critical temperature for superconductivity without using
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counterterms. In the proof we combine the tree expansion of [SW] with the arch expan-
sion of Iagolnitzer and Magnen (see [DR]) to extract overlapping loops [FST1] which are
crucial for the regularity properties of the selfenergy [PS].

[FST1] J. Feldman, M. Salmhofer, E. Trubowitz, J. Stat. Phys. 84 (1996) 1209–1336

[FST2] J. Feldman, M. Salmhofer, E. Trubowitz, Comm. Pure Appl. Math. 53 (2000)
1350–1384

[DR] M. Disertori, V. Rivasseau, Comm. Math. Phys. 215, 251,291 (2000)

[PS] W. Pedra, M. Salmhofer, Fermi Systems in Two Dimensions and Fermi Surface Flows,
to appear in the Proceedings of the ICMP 2003 and papers to appear

[SW] M. Salmhofer, C. Wieczerkowski, J. Stat. Phys. 99 (2000) 557–586

5.7.4 RG flows with symmetry breaking

C. Honerkamp, O. Lauscher, W. Metzner, M. Salmhofer

The flow to strong coupling observed in many RG studies of interacting fermion sys-
tems [HSFR,HM] indicates the occurrence of symmetry breaking. It is also a major
technical problem for the attempt to give a more detailed description of the symmetry–
broken phases of such models. Tendencies for a suppression of the quasiparticle weight are
weaker than the drive towards symmetry breaking instabilities [HS]. We have developed
techniques for flows in which symmetry breaking can occur and studied the flow of a BCS
gap in detail (to appear). We are also working on the question of how Ward identities
that are broken by the RG flow are restored at the end of the flow.

[HM] C. Halboth, W. Metzner, Phys. Rev. B 61 (2000) 7364; Phys. Rev. Lett. 85 (2000)
5162;

[HSFR] C. Honerkamp, M. Salmhofer, N. Furukawa, T.M. Rice, Phys. Rev. B 63, 035109
(2001)

[HS] C. Honerkamp, M. Salmhofer, Phys. Rev. B 67, 174504 (2003)

5.7.5 Ferromagnetism and Superconductivity

C. Husemann, M. Salmhofer

We study the interplay of ferromagnetism and superconductivity in the two–dimensional
Hubbard model with hopping amplitudes t between nearest neighbours and t′ between
next–to–nearest neighbours, in the regime 0.3 < −t′/t < 0.5. In this regime, the
temperature–flow RG predicts a zero–temperature transition between d–wave supercon-
ductivity and ferromagnetism if the Fermi surface has van Hove singularities [HS]. We
have performed a mean–field analysis of possible coexistence (diploma thesis of C. Huse-
mann). Work on an RG treatment that allows for an analysis of this transition and on
possible other symmetry breaking effects is in progress.

[HS] C. Honerkamp, M. Salmhofer, Phys. Rev. Lett. 87 (2001) 187004, Phys. Rev. B 64
(2001) 184516
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5.7.6 Quantum Boltzmann Equation

L. Erdős, M. Salmhofer, H.–T. Yau

We study the emergence of the quantum Boltzmann equation from the reversible dynamics
given by the N–particle Schrödinger equation for fermions, on the kinetic timescale t ∼
λ−2. We have shown that the problem can be reduced to showing restricted quasifreeness
of the time–evolved state on this timescale [ESY]. The mathematical investigation of this
property is work in progress.

[ESY] L. Erdős, M. Salmhofer, H.-T. Yau, On the Quantum Boltzmann Equation, J. Stat.
Phys., in press

5.7.7 Quantum Diffusion

L. Erdős, M. Salmhofer, H.–T. Yau

We study the long–time limit of the quantum Lorentz gas. We prove that, for a weakly
coupled system with coupling strength λ, the time evolution on timescale t ∼ λ−2−η,
η > 0, is given by a diffusion equation (to appear). This is the first time that a proof of
the behaviour of these systems on time scales bigger than O(λ−2) is given. The essential
complication is that the number of collisions that happen on such timescales diverges as
an inverse power of λ.

5.7.8 Funding

W. Pedra is a PhD student funded by the Max–Planck Institute for Mathematics in the
Sciences. The visit of Joel Feldman was funded by Max–Planck Institute for Mathematics
in the Sciences and the Graduiertenkolleg Quantenfeldtheorie at the ITP.

5.7.9 Organizational Duties

M. Salmhofer

Leiter, DPG–Fachverband Theoretische und mathematische Grundlagen der Physik

Reports for the Fonds zur Förderung der Wissenschaften (FWF)

Refereeing for Phys. Rev. Lett., Phys. Rev. B, Rev. Math. Phys.

5.7.10 External Cooperations

L. Erdős, LMU München
J. Feldman, UBC, Vancouver
C. Honerkamp, MPI–FKF Stuttgart
C. Landim, IMPA, Rio de Janeiro
W. Metzner, MPI–FKF Stuttgart
J. Quastel, University of Toronto
T.M. Rice, ETH Zürich
E. Trubowitz, ETH Zürich
H.–T. Yau, Stanford University
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5.7.11 Publications

published

C. Honerkamp, M. Salmhofer
Flow of the quasiparticle weight in the N–patch renormalization group scheme
Phys. Rev. B 67, 174504 (2003)

in press

C. Landim, J. Quastel, M. Salmhofer, H.T. Yau
Superdiffusivity of asymmetric exclusion processes in dimensions one and two
Communications in Mathematical Physics, in press

L. Erdős, M. Salmhofer, H.-T. Yau
On the Quantum Boltzmann Equation
J. Stat. Phys., in press

Conference proceedings

W. Pedra, M. Salmhofer
Fermi Systems in Two Dimensions and Fermi Surface Flows
invited talk at the 14th International Congress of Mathematical Physics, Lisbon, 2003, to
appear in the Proceedings of the ICMP 2003

Carsten Honerkamp, Manfred Salmhofer
Ferromagnetism and triplet superconductivity in the two-dimensional Hubbard model
Proceedings of M2S-Rio, Rio de Janeiro 2003, Physica C, to appear

5.7.12 Guests

Prof. Joel S. Feldman, (UBC, Vancouver), September 15 – December 14, 2003.
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5.8 Graduate Studies Programme ’Quantum Field

Theory’ (GSP)

Host institution: Center for Theoretical Sciences (NTZ) at Center of Advanced Studies
(ZHS)
Cooperating institutions: Institute for Theoretical Physics, Mathematical Institute
and Max-Planck-Institute “Mathematics in the Sciences”.

Quantum field theory (QFT) is the basis of the overwhelming part of modern Theoretical
Physics. Up to now it is by no means exhausted concerning its rich mathematical struc-
tures, its far-reaching physical consequences and also its conceptual meaning. Together
with classical field theory, on which it rests, as well as with statistical and computational
physics it is the most effective methodology of Theoretical Physics. QFT has essential
applications reaching from the subnuclear through nuclear, atomic, molecular and meso-
scopic systems up to the realm of cosmology. Much effort is required in order to fully
understand all the topics in QFT which grow up in these areas. The history of QFT is
closely connected with the development in many fields of modern mathematics. Obvi-
ously, no real success in QFT will be possible without evolving and intensively studying
also its mathematical structures.

The closely related Research Areas of the Graduate Studies Programme, having
a longstanding tradition at the University of Leipzig and being in accordance with the
international state-of-the-art, are:

(1) The investigations of the Mathematical Structures of Quantum Field Theory and
of its conceptual content are of principal as well as of methodological interest. They
are motivated partly by actual physical problems, partly they grow up because of their
pure mathematical relevance. The main methods to be applied are (non-commutative)
differential geometry, theory of Lie (super)groups and their representations, theory of
operator algebras and (nonlinear) functional analysis as well as functional integration.

(2) Relativistic Quantum Field Theory is the generally accepted frame for describing
the primary interactions of elementary particles with each other, with external fields
and under various boundary conditions. The actual investigations are directed especially
to the perturbative as well as nonperturbative treatment of the Standard Model and
its supersymmetric extensions, to the theory of strings, on lattice approximations and
computer simulations, as well as to QFT under external conditions.

(3) The Nonrelativistic Quantum Field Theory is one of the outstanding methods to
study basic properties of condensed matter and various many body systems; it is closely
related to the methods of statistical and computational physics. The actual investigations
are on (strong) correlations in spin and low-dimensional electron systems and on scaling
behaviour, phase transitions and finite- size effects in ordered and disordered systems.

The Graduate Studies Programme contains also a well established Academic Train-
ing Program consisting of a thematically coordinated Course of Main Lectures and
various Specialized Lectures covering the whole research area. This is supported by the
weekly Colloquium and three Main Seminars on “Mathematical Physics”, “Quantum
Field Theory” and “Theory of Condensed Matter”. The PhD students also profit from
the running scientific activities (including periodic workshops, schools and conferences),
from the guest programs and the scientific spirit of the cooperating institutions. Any of
these research fields are investigated in cooperation with various national and interna-
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tional partners. The majority of the related projects – which are considered in detail in
the description of the various research groups – belong to the interdisciplinary area of
Mathematical Physics. Research and Education profits very much from the scientific (and
spatial) neighbourhood of mathematicians and theoreticians and from the longstanding,
fruitful cooperation between the three cooperating institutions – being unique in Germany.
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