Announcement of a topic for:

Seminar Research

Seminar Methods

Master Theses [x]

(please mark one or more)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Unraveling the Complexity of Black Carbon: Heterogeneities and Mixing State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Date</td>
<td>21 August 2023</td>
</tr>
</tbody>
</table>
| Supervisor (contact) | Prof. Dr. Mira Pöhlker
Leibniz-Institut für Troposphärenforschung (TROPOS)
Permoserstraße 15, 04318 Leipzig
Telephone: +49 341 2717-7431
E-Mail: mira.poehlker@tropos.de |
| Additional Contact | Dr. Arun Babu Suja
Leibniz-Institut für Troposphärenforschung (TROPOS)
Permoserstraße 15, 04318 Leipzig
Telephone: +49 341 2717-7066
Email: arun.babu@tropos.de |
| Second Reviewer | |
| Description | Black carbon (BC), a ubiquitous component of atmospheric aerosols resulting from incomplete combustion, is an intricate and important contributor in climate change. BC particles can vary widely due to differences in their emission sources, atmospheric aging, and transport processes. BC can interact with other aerosols during its formation and transport, leading to complex particle mixtures. This influences its optical properties, atmospheric lifetime, and impact on climate. Moreover, the heterogeneity of BC, encompassing variations in size and shape, further adds to its multifaceted behavior in the atmosphere.
This study places a central emphasis on two critical aspects: the heterogeneity of BC particles and their mixing state. The research goal of the proposed master's thesis is to understand the characteristic patterns observed between the particle size distributions and BC mass concentration correlations (BC-size correlation spectrums), to provide a novel BC related approach for aerosol classification. The study will utilize the in-situ observations of BC mass concentrations and particle size distribution measurements from several field stations across the globe and also validated with Single particle soot photometer measurements from selected TROPOS research stations. In addition to this, the study will also investigate how BC's mixing state, heterogeneity, and volatility influence its atmospheric behavior and interactions. |