

Group Atmospheric Radiation

Arctic cloud radiative effect – Comparison of observations and ERA5 and ECMWF IFS

Master Thesis:

- The cloud radiative effect (CRE) at the surface is a key parameter for Arctic Amplification.
- CRE was observed during airborne campaigns ACLOUD, AFLUX and MOSAiC-ACA and found to be strongly variable.
- The question of the thesis is how well the CRE is represented in models and reanalysis?
- CRE will be extracted from ERA 5 and IFS simulations along the flight tracks.
- statistical analysis and comparison of CRE data sets
- separation for surface conditions sea ice vs. open ocean and different cloud properties

Sem. Research: - CRE of Arctic boundary layer clouds

- sensitivity of CRE on cloud, surface, and atmospheric properties
 evaluation of ERA5 and IFS by observations
- Sem. Methods: airborne observations of CRE
 - CRE adjusted for interactions between surface and clouds

Contact: Dr. André Ehrlich, LIM, Zi. 9, 0341-97 32874, a.ehrlich@uni-leipzig.de

Anmeldung eines Themas für ein/e

Forschungsseminar	X	
Methodenseminar	X	
Masterarbeit	X	(bitte eines oder mehrere ankreuzen)

Thema	Arctic cloud radiative effect – Comparison of observations and ERA5 and ECMWF IFS
Datum	
	available from 30. August 2024
Betreuer	UnivProf. Dr. Manfred Wendisch
(mit	Leipzig Institute for Meteorology (LIM)
Kontaktdaten)	Stephanstr. 3, D-04103 Leipzig, Germany
	++49 (0) 341 97 32 851 (Phone)
ggf. weitere	André Ehrlich, Phone: +49 341 97-32874
Kontaktperson	Email: a.ehrlich@uni-leipzig.de
Zweitgutachter	Prof. Dr. Andreas Macke, TROPOS
Kurzbeschreibung:	The cloud radiative effect (CRE) at the surface is a key parameter for Arctic Amplification. The CRE was observed during airborne campaigns ACLOUD, AFLUX and MOSAiC-ACA and found to be strongly variable. The question of the thesis is how well the CRE is represented in models and reanalysis data? Master Thesis:
	- CRE will be extracted from ERA 5 and IFS simulations along the flight tracks.
	 statistical analysis and comparison of CRE data sets separation for surface conditions sea ice vs. open ocean and different cloud properties
	 Sem. Research: - CRE of Arctic boundary layer clouds - sensitivity of CRE on cloud, surface, and atmospheric properties - evaluation of ERA5 and IFS by observations
	Sem. Methods: - airborne observations of CRE - CRE adjusted for interactions between surface and clouds

Literatur:	Becker, S., Ehrlich, A., Schäfer, M., and Wendisch, M.: Airborne observations of the surface cloud radiative effect during different seasons over sea ice and open ocean in the Fram Strait, Atmos. Chem. Phys., 23, 7015–7031, https://doi.org/10.5194/acp-23-7015-2023, 2023.
	Müller, H., Ehrlich, A., Jäkel, E., Röttenbacher, J., Kirbus, B., Schäfer, M., Hogan, R. J., and Wendisch, M.: Evaluation of downward and upward solar irradiances simulated by the Integrated Forecasting System of ECMWF using airborne observations above Arctic low-level clouds, Atmos. Chem. Phys., 24, 4157–4175, https://doi.org/10.5194/acp-24-4157-2024, 2024