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Summary

The quasi two-day wave (QTDW), a prominent feature of the mesosphere mainly around

solstices, is simulated with the COMMA-LIM Model (Cologne Model of the Middle At-

mosphere - Leipzig Institute for Meteorology). The calculations are made approximately

one month after the summer solstice in the Northern Hemisphere when the QTDW

reaches its maximum in the mesosphere and lower thermosphere. The results show that

the QTDW produces a moderate westward forcing of the zonally averaged ow and a

poleward driving of the residual mean meridional circulation.

Zusammenfassung

Die Quasi Zwei-Tage Welle (QTDW), eine deutliche Erscheinung in der Mesosph�are kurz

nach dem Sommer Solstitium, wird mit dem COMMA-LIM Modell (Cologne Model of

the Middle Atmosphere - Leipzig Institute for Meteorology) simuliert. Die Zwei-Tage

Welle wurde unter Juli-Bedingungen an der unteren Modellgrenze angeregt, zu der Zeit,

zu der sie ihr Maximum in der Mesosph�are und unteren Thermosph�are erreicht. Die

Ergebnisse zeigen eine sich westw�arts ausbreitende Welle, die auf den Grundstrom eine

moderate Beschleunigung nach Westen aus�ubt. Die residuelle mittlere Meridional Zirku-

lation erf�ahrt dadurch eine zum Pol gerichtete Triebkraft.

1 Introduction

The quasi two-day wave (QTDW) has been observed in the upper stratosphere and

mesosphere from the ground and from space over the past 25 years (e.g., Muller and

Nelson, 1978; Kalchenko, 1987; Plumb, 1987; Jacobi et al., 1997; Liebermann, 1998;

Gurubaran et al., 2001). The wave occurs with greatest amplitudes after summer solstice

in both hemispheres and lasts for a few weeks. It propagates westward with a zonal

wavenumber 3, also observed is wavenumber 4 (Rodgers and Prata, 1981; Meek et al.,

1996) and periods close to 48 hours in the Southern Hemisphere (e.g., Plumb, 1987)

and 50-52 hours in the Northern Hemisphere (e.g., Muller, 1972). As a characteristic

feature, partially in the Southern Hemisphere and at low latitudes the meridional wind

disturbance appears 2 to 3 times larger than the zonal wind (Gurubaran et al., 2001)

whereas Jacobi (1997) reports that a ratio of the zonal to meridional wind amplitude

is of about unity at 52Æ N. Typical amplitudes of the meridional wind disturbance v
0

are shown with 20 -30 m/s (Gurubaran et al., 2001). There is also a signal in the

temperature �eld from satellite measurements with disturbances between 0.4 and 0.6 K

(Rodgers and Prata, 1981). The latitudinal structure of the QTDW in the temperature

oszillations shows maximized amplitudes near 20Æ (Randel, 1994) in each hemisphere.



Two mechanisms of excitation are in discussion: Salby (1981) proposes the QTDW as a

manifestation of the Rossby-gravity normal mode with wave number 3 which corresponds

to an eigenfunction of Laplace's tidal equation. Another suggested forcing of the QTDW

is a development of the baroclinic instability near the summer stratospheric wind jet

(Plumb, 1987; P�ster, 1985), whereas Randel (1994) proposes the QTDW-appearance

as a combination of resonant and unstable modes.

The spontaneous excitation of the QTDW succeeded only with some GCM's (e.g., Hunt,

1981; Norton and Thuburn, 1996, 1997). It is possible that the lack of small scale

perturbations at the model boundary of mechanistic models may hinder the excitation

of an instability (Palo et al., 1999). But independently from its origin, the study of

propagation and interaction of the wave with the mean ow, tides and solar variability

is possible with mechanistic models through external forcing. This is the main task of

this paper.

In the second section a short description of the model setup used for the simulation is

given. In the third section the inuence of the QTDW on zonally averaged circulation

is discussed using time-space analysis and the Eliassen-Palm (EP) ux diagnostics. The

residual mean meridional circulation will be also estimated. In the conclusion the main

results are summarized.

2 Model Setup

The Cologne Model of the Middle Atmosphere (COMMA) is a three-dimensional global

mechanistic model of the Earth's atmosphere from approximately 3 km to 135 km in

logharithmic pressure heights with 24 layers (at this time in the Leipzig version) and a

horizontal resolution of 64 gridpoints in longitude and 36 in latitude.

The model contains a full description of radiative processes. It simulates the circulation

in the middle atmosphere and enables investigations of tides, planetary waves and change

of radiative forcing through atmospheric constituent changes. For more information the

reader is referred to Lange (2001) and references therein.

To force the QTDW the Hough function for the (3,0) normal atmospheric mode is calcu-

lated (Swarztrauber and Kasahara, 1985). The latitudinal structure of the wave number

3 Rossby mode F (�) at the lower boundary in the geopotential �eld was included in the

forcing equation

h(�; �; t) = (1� exp(�
t

�
)) F (�) cos(3�� !t): (1)

Here, � refers as longitude, � as latitude and ! as the periode. With � = 259200 s (3

days) the forcing reaches 95% of its amplitude in approximately 9 days. The period of

the forcing remains constant with 51.5 hours during the simulation. This period was

found as the one with the strongest model response. The maximum of the amplitude at

the lower boundary was set to 30 geopotential meters.

After 40 days of settling time for the general circulation with the QTDW a period of

17 days was recorded to investigate the phenomenon. To estimate the inuence of the

QTDW on the zonally averaged circulation a reference run was performed without the

QTDW forcing.



3 Results

The characteristic properties of the middle atmosphere in zonal wind during summer are

the mesospheric easterlies which extend up to the mesopause where the wind reverses

and becomes westerly. This is shown in Figure 1 (top and middle). There are two peaks

in the easterlies, one at the equator and one at 40Æ N at 45 km. In the winter hemisphere

westerlies dominate up to approximately 95 km and the maximum peaks at 55 km at

roughly 70Æ S.

Considering the time averaged zonal mean wind �eld from the reference run (Fig.1,

bottom) and the run with QTDW-forcing (Fig.1, top) the greatest di�erences occur at

the stratopause southward of the equator. This is due to an easterly maximum at this

height at the equator with velocities of approximately 35 m/s. Note that the circulation

in the tropical stratosphere is not well expressed in COMMA-LIM, for example it

contains no Quasi-Biennal Oscillation.

Another signi�cant change is recognized as a tongue-shaped negative di�erence - an

increase in absolute velocity - from 10Æ N at 60 km up to 100 km at approximately

60Æ N. It will be shown below that this tongue coincides with a westward momen-

tum forcing due to the divergence of the Eliassen-Palm ux. In addition, below

this tongue exists a similar structure of positive di�erences which means a negative

acceleration of the zonal ow. Changes in the environment are possibly induced from

the changed wind �eld, but they may also arise from �ltering conditions for gravity waves.

Fourier Analysis

The structure of the QTDW is analyzed from the raw model results by using spatial and

time Fast Fourier Transformation. The geopotential structure of the wave is shown in

Figure 2. The structure extends from the mesophere into the the lower thermosphere. The

maximum of the geopotential �eld disturbance is found at midlatitudes of the Northern

Hemisphere (NH) in the mesopause region where the zonal wind reverses.

Figure 3 shows the vertical and latitudinal structure of the QTDW in the zonal and

meridional wind amplitude and temperature amplitude, respectively. As can be seen,

the meridional wind component dominates the wind distortion in the mesosphere at

midlatitudes. In high latitdues the magnitude of the two wind components becomes

comparable. Although the wave is primarily a summer hemisphere phenomenon, the

magni�ed values of the meridional wind extend into the winter hemisphere. The region

of strongest amplitude values reaches from the equator at 65 km to the midlatitudes of

NH at 85 km.

In accordance with Salby (2001) comparison of the geopotential �eld (Fig.2) with the

temperature �eld (Fig.3, bottom) reveals that the temperature maxima of the QTDW

occur at locations of sharp vertical changes in the geopotential height amplitude.

The lowest temperature maximum is found at 25Æ N in 55 km with 6.5 K while

two maxima of similar magnitude at midlatitudes exist in 88 km and 115 km. These

structures resemble to results of Palo (1999) who has found in calculations with GCM's

and comparisons with satellite data; although they were carried out for the southern

hemisphere.

These structures were then found as westward propagating �elds (see Figure 4) by



Figure 1: Zonal mean zonal velocity u. Top: u of the QTDW, middle: u of the reference run,

bottom: di�erence between QTDW run and reference run; Mid-July conditions.



Figure 2: Amplitude of the Geopotential Height Pertubation of the QTDW (m) for Mid-July

conditions.

using the formulas given in Hayashi (1971). His formulation allows to distinguish between

amplitudes and phases of progressive and retrogressive waves applying cross-spectra

analyis between the time dependent space-Fourier coeÆcients. Note that the eastward

parts of the QTDW are negligible.

Horizontal motion of the QTDW at 90 km is mapped in Figure 5. The horizontal

wind disturbance components u
0 and v

0 compose global-scale gyres that are centered

near the equator. The strongest motion exists at northern midlatitudes but extend also

into the southern hemisphere as far as 40Æ S. Salby (2001) shows a similar picture and

determined a consistent pattern with observations.

Wave-Mean Flow Interaction

To understand the wave-mean ow interaction of the QTDW it is useful to evaluate the

wave Eliassen-Palm (EP) uxes and their inuences through the Transformed Eulerian-

Mean (TEM) equations. The zonal TEM momentum equation in spherical coordinates

can be written as follwos (Andrews et al., 1987):

ut + v
? [
(u cos�)�

a cos�
� f ] + w

?
uz =

1

�0a cos�
r � F; (2)

with meridional and vertical EP ux components

F
� = �0a cos� (uz

v0 �0

�z

� v0 u0) (3)

and

F
z = �0a cos� f[f �

1

�0a cos�
(u cos�)�]

v0 �0

�z

� w0 u0g: (4)



Figure 3: Amplitudes of the QTDW. Top: zonal wind u (m/s), middle: meridional wind v

(m/s). Contour intervall is 1 m/s. Bottom: Temperature T (K), contour intervall is 0.5 K.

Conditions like in Fig. 1.



Figure 4: Westward propagating parts of the QTDW. Top: zonal wind u, middle: meridional

wind v, bottom: temperature T .



Figure 5: Eddy motions of the QTDW at 90 km.

Overbars and primes denote zonally averaged and pertubation quantities, a is the

Earth's radius, � is latitude, f is the Coriolis parameter, �0 the density, � means the

potential temperature and subscripts denote the corresponding derivatives. The residual

mean meridional circulation (0; v?; w?) has the components

v
? = v �

1

�0

@

@z
(�0

v0 �0

@�z
@z

) (5)

w
? = w +

1

a cos�

@

@�
( cos�

v0 �0

@�z
@z

): (6)

Figure 6 shows the calculated force per unit mass due to the divergence of the Eliassen-

Palm ux (EPFD), the vertical convergence of eddy heat transport (F z)z and the merid-

ional convergence of eddy momentum ux (F �)�. The QTDW induces moderate west-

ward forcing at the midlatitudes of the Northern Hemisphere in the mesosphere and lower

thermosphere (MLT) region which can be seen in the top and middle of Fig.6. The sep-

aration reveals that this is due to the dominant vertical convergence of meridional heat

ux (F z)z.

The eddy momentum ux divergence (F �)� exhibits an almost symmetric structure in

the MLT region. In the NH between 10Æ and 50Æ (F �)� accounts for weak eastward

driving which is superposed by (F z)z, while particularly south of the equator westward

acceleration appears in the winter hemisphere. The latter seems to be the reason for an

increasing stratopause easterly jet above the equator (see also Fig.1).

The residual mean meridional wind v
? in midlatitudes (Fig.7) is directed poleward

because of the o�set by Coriolis acceleration associated with downward residual motion

w
?.

At the high latitudes a weak cell of poleward transport exists above 95 km, implying

downward motion at the pole and south- and upward transport below 90 km (Figure



Figure 6: Top: the force per unit mass (contour lines 1ms�1
day

�1) and EP-ux vector (arrows,

the vertical component is scaled by factor 50), middle: vertical convergence of meridional heat

ux per unit mass and day (F z)z, bottom: meridional convergence of momentum ux per unit

mass and day (F �)�.



Figure 7: Residual mean meridional circulation of the mesosphere and lower thermosphere

in Northern Hemisphere. left: meridional velocity v
?; right: vertical velocity w

?, scaled with

factor 100.

Figure 8: Time and zonally averaged Temperature of the mesosphere and lower thermosphere

at Northern Hemisphere in July. left: reference run; right: run with QTDW-forcing.



Figure 9: Time and zonally averaged Zonal Wind with the same localisation as in Fig. 8.

7). Lieberman (1999) reported a residual vertical mean circulation which results through

upward/downward motion in a cool/warm pair of cells tilted across the middle and high

Southern Hemisphere latitudes during summer conditions. It acts to reduce the merid-

ional gradient of T which in turn must lead, due to the thermal wind balance, to a

decreasing vertical shear of the zonal wind. This feature appears also in the COMMA-

LIM calculations (see Figure 8 and 9) for the NH summer.

4 Conclusions

The QTDW is simulated within the COMMA-LIM using external forcing at the

lower boundary. The shape of the geopotential and meridional wind �eld are in a

good agreement with other investigations of the QTDW. The wave is identi�ed as a

westward propagating phenomenon with the aid of cross spectrum analysis. The EP ux

divergence per unit mass shows an westward acceleration of the mean ow in a broad

region of the summer MLT up to 5 m s
�1

day
�1. This driving is due to the vertical

convergence of the meridional heat ux. The residual mean meridional circulation

indicates at mid and high latitudes an poleward residual v?.

The residual meridional mean circulation acts to reduce the pole-equator gradient of the

mean Temperature at 90 km and so the vertical shear of the zonal mean wind decreases.
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