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Summary

The practical handling and analysis of satellite data is outlined using the programming language
Python. The limb sounding technique of the SABER instrumenton board of the TIMED satel-
lite delivers vertical profiles of kinematic temperature from the stratosphere (∼30 km) up to the
lower thermosphere (∼120 km).
The procedure may be summarised as follow: In the first step the level 2 data for one month are
extracted from the netCDF format and arranged into a new altitude-latitude grid for the ascend-
ing and descending orbits. The longitudinal structure is rearranged applying the decomposition
into zonal harmonics. Various cross sections of the data give a good overview of the thermal
structure and dynamics of the atmosphere up to 120 km. The monthly values of the zonal aver-
aged temperature are compared to the available data from stratospheric reanalyses up to 60 km
as well as the initialized background climatology of general circulation models for the middle
atmosphere.

Zusammenfassung

In diesem Artikel soll der praktische Umgang mit Satellitendaten und deren Auswertung unter
Verwendung der Programmiersprache Python skizziert werden. Auf der Basis der Horizont-
sondierungen des SABER Instruments auf dem TIMED Satelliten werden vertikale Profile
wie die kinetischen Temperatur von der Stratosphäre (∼30 km) bis zur unteren Thermosphäre
(∼120 km) gewonnen.
Die Arbeitsschritte bei der Analyse lassen sich wie folgt gliedern: Als erstes werden die Level
2 Produkte eines Monats aus dem netCDF Format extrahiert undan ein neues Höhen-Breiten
Gitter für jeden auf- und absteigenden Orbit angepasst. DieLängenstruktur wird mit Hilfe einer
Zerlegung in harmonische Funktionen regularisiert. Diverse Querschnitte der Daten geben ein
guten Überblick über die thermischen Struktur und Dynamik der Atmosphäre bis 120 km. Die
Monatswerte des Zonalmittels der Temperatur werden mit denen aus operationellen Reanal-
ysedaten (∼60 km) sowie der Hintergrundklimatologie von Zirkulationsmodellen der mittleren
Atmosphäre verglichen.

1. Introduction

1.1 Motivation

The knowledge of a modern interpreted progamming language is necessary in todays science.
These offer many useful numerical and visualisation facilities for analysing atmospheric data.
The Interactive Data Language (IDL) and Matlab are well-known commercial environments of
this kind. A freely available language is the Python interpreter and the extensive standard library
can be downloaded for all major platforms from the Python Website,http://www.python.org/.
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It’s elegant syntax and dynamic typing, together with its interpreted nature, make it an ideal
language for scripting and rapid application development in different fields (Perez et al. 2007).
The interactive environment of Python is performed here showing an example of application for
middle atmosphere analysing satellite measurements from SABER instrument on the TIMED
satellite. Several useful python modules are imported to extract and prepare data calculating
daily averaged temperature fields and zonal harmonics. These steps are necessary to obtain
information of planetary waves, tides and also gravity waves from satellite measurements. Some
extracts from the main Python scriptsaber.pydeclared asAlgorithmare given in the following
sections.

1.2 Getting Started with Python

The Python programming language and several useful modulesare installed on the Linux
Compute-Server (passat) of the Leipzig Institute for Meteorology (LIM).
The following statements given on Algorithm 1 describe the first steps starting with the in-
teractive nature of Python, how to import the numerical module numpyand running Python
programs:

Algorithm 1 First steps for getting started with Python. (y typing enter button,⇄ typing
tabulator button)> ipython y # starting Python interpreterIn[1℄: # Python promptIn[1℄: import ⇄ # lists all callable modulesIn[2℄: import numpy as N # imports the numerical module numpyIn[3℄: N.⇄ # shows all numerical functionsIn[4℄: N.zeros? y # zeros(shape, dtype=float, order=’C’)In[5℄: a = N.zeros(10,float) # generating an array with zeros as elements> python saber.py y. # running a python script> pydo -w saber.py y # generating a html- documentation> pydo -g y # open the python documentation server

The language can be started usingpythonfor executing python scripts and for interactive typing
ipythonwhich features a lot of preferences e.g. viewing at data, testing new ideas, combining
algorithms and directly evaluating of results.
The structure of more complex programs should be divided into classand functionsas given
in Algorithm 2. The Python scriptsaber.pyincludes oneclassand severalfunctionsstarting
with thedef statement. At the beginning of each program all necessary modules for numerical
operationsnumpyand visualisationmatplotlibhave to be imported. The function__init__()is a
kind of main program where all other functions are step-wisecalled such as for reading filelist,
reading the scientific data format netCDF, for harmonic analysis and for plotting results. The
self statement, see Algorithm 2, is used to define global variable(a) as follow:self.a.
Two more application of the Python language are given in appendix on Fig.8 and Fig.9 showing
at first a generated html-documentation of the main Python script saber.pyusingpydoc. This
document lists allModules, FunctionsandDatawhich are used as well asCommentswhich are
written in the program. The second example presents a user interface for analysing different
atmospheric data based onwxpython.
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Algorithm 2 Programm structure of the Python script saber.py includingfunctions for reading
netCDF data, analysis and visualisation.lass saber(objet):def __init__(self):def reading_filelist(self):def reading_netdf(self):def zonal_harmonis(self):def plotting_orbits(self):def plotting_latlev(self):saber = saber()
2. SABER on TIMED Satellite

The TIMED satellite was launched on 7. December 2001 into a 625 km orbit of 74.1° in-
clination to investigate the Thermosphere, Ionosphere, Mesosphere and Energetics Dynamics.
The SABER instrument on board of the spacecraft began makingobservations in late January
2002 (Mlynczak, 1997). By step-scanning the atmospheric limb SABER measures height pro-
files of temperatures and selected chemical species from 10-180 km altitude with a horizontal
resolution along track of about 400 km. The multispectral radiometer operates in the near to
mid-infrared over the range 1.27 µm to 17 µm (7865 cm-1 to 650 cm-1). It measuresCO2
infrared limb radiance from approximately 20-120 km altitude and the kinetic temperature pro-
files are retrieved over this heights using a full non-LTE inversion (Mertens et al. 2004). The
used SABER L2A data (version 1.07) were downloaded from the web site:http://saber.gats-
inc.comincluding all observed geophysical parameter.
The SABER latitude coverage extends from about 52° of one hemisphere to 83° of the other.
This latitude range turn back after a 60-day period while thesatellite change its orientation.
For investigating dynamics at mesosphere/lower thermosphere (MLT) region atmospheric tides
are the most dominate features. Tides are global-scale waves (e.g., in temperature, winds, and
density) with periods that are subharmonics of a solar day with 24 (diurnal) and 12 (semidiurnal)
hours corresponding to the longitudinal structure of the first two zonal harmonics. These can be
of migrating and nonmigrating nature. Migrating tides propagate westward with the apparent
motion of the sun. In contrast to that, nonmigrating tides are non-sun-synchronous components.
They can propagate westward, eastward, or remain standing with any zonal wavenumbers ex-
cept for those from the migrating tides. Thus, tidal waves play an important role in the interpre-
tation of satellite measurements at MLT region (Oberheide et al., 2003).
A new method for analysis of satellite data is presented in Pancheva et al. (2008). They use
derived temperature fields from SABER to extract the migrating and nonmigrating tidal compo-
nents as well as all stationary and travelling planetary waves simultaneously. The comparison
between the altitude and latitude structure of the SABER andUKMO planetary waves of the
northern hemispheric stratosphere indicates a good agreement.

2.1 Reading Netcdf Data

The SABER L2A data are available per orbit in theNetwork Common Data Form(netCDF) of
about 10 MByte size. This data format is self-describing andportable including information of
defining data. Special libraries are necessary to extract the content. A monthly data coverage is
obtained processing 30×14 orbits in the batch mode producing a list of all file names typing: >ls -a *.n > filelist.txt. The extraction of the netCDF data using Python is described
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Variable(dimensions) units Long name
Event(event) event number for current file
date(event) yyyyddd date [yyyyddd]
time msec time since midnight
earth_sun(event) km earth-sun distance
tpDN(event) 0=day 1=night
tpAD(event) 0=ascending 1=descending
tpSolarZen(event) degrees tangent-point solar-zenith angle
tplatitude(event,altitude) degrees tangent-point latitude
tpaltitude(event, altitude) km tangent-point altitude
tplongitude(event, altitude) degrees tangent-point longitude
tpSolarLT msec tangent-point local solar time
sclatitude(event,altitude) degrees spacecraft latitude
scaltitude(event, altitude) km spacecraft altitude
sclongitude(event, altitude)degrees spacecraft longitude

Table 2:Geolocation data from the SABER measurements. The statements in brackets give the
dimension of the data array.

in Algorithm 3 importing the moduleScientific.IO.NetCDF. The list of variables can be printed
out enter:In[6℄: nfile.variables y.
The level 2A data contains geolocation listed on Tab.2 and retrieval products listed on Tab.5.
The variables that are dimensioned use the integer:Altitude, Event. TheAltitudedimension has
400 elements to cover the maximum altitude range, but not all400 elements will have data. The
Eventdimension depends on the number of events in the netCDF file. The geolocation data
give information about geometry between sun-earth-satellite system. The spacecraft location
is declared in geografic coordinates (sclongitude, sclatitude, scaltitude). The tangent point
coordinates for the limb sounding observation technique are indicated with the prefix (tp). A
reconstructed picture for one point in time is shown on Fig.1(left panel). The solar zenith angle
at the tangent point (tpSolarZen) indicates the angle between the source of solar radiation and
the observation point. The variabletpAD is later used in this section for separating orbits into
ascending (tpAD=0) and descending (tp_AD=1) data.
The level 2A products of essential meteorological parameter (e.g.T, ρ , p) and concentration of
atmospheric species (CO2,O3, NO, H2O) retrieved from SABER instument are listed on Tab.5.
The right panel on Fig.1 represents one vertical profile of temperature at 26.6°N on 1/1/2005
retrieved by the limb sounding technique.

Algorithm 3 Excluding SABER L2A data with variable name ’ktemp’ from netcdf file and con-
verting as a numpy array.In[1℄: from Sientifi.IO.NetCDF import NetCDFFile as DatasetIn[2℄: import numpy as NIn[3℄: nfile = NetCDFFile('filename.n','r')In[4℄: tem = nfile.variables['ktemp'℄In[5℄: tem = tem.getValue()In[6℄: tem = N.array(tem,float)
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Figure 1: left panel: The geometry of the tangent point at 50.4°N and 9.2 hours UT is recon-
structed using the geolocation data which are included in the L2 netCDF file: (spacecraft: big
circle, tangent point: small circle, arrow: solar ray path). right panel: Single vertical profile of
temperature at 26.6°N on 1/1/2005.

Variable(dimensions) units Long name

ktemp(event, altitude) K kinetic temperature (merge)
density(event, altitude) 1/cm3 atmospheric density
pressure(event, altitude) mbar pressure (merge)
tpgpaltitude(event, altitude)km tangent-point geopot. altitude
O3_96(event, altitude) mixing ratio O3 mixing ratio 9.6µm (merge)
H2O(event, altitude) mixing ratio H2O mixing ratio (merge)
CO2(event, altitude) mixing ratio CO2 mixing ratio

Table 5:Derived level 2 products of meteorological parameters and selected chemical species.
The statements in brackets give the dimension of the data array.

2.2 Satellite Orbits

The daily global projection of satellite orbits separated into ascending (asc) and descending
(dsc) nodes is presented in Fig.2 for the 1st January 2005. Ascending (open circles) orbit nodes
are the instrument footprints when the satellite moves fromsouth to north and descending (solid
circles) orbit nodes are the footprints for north-south movement. Alltogether 14 orbits covering
the globe having a longitudinal resolution of about 25°. ThePython script for mapping the
TIMED satellite orbits is given on Algorithm 4 using thematplotlib toolkits basemap.Every
circle includes about 98 events of 400 altitude elements andis defined in time by theuniversal
time(tUT) and thesolar local time(tLT). The dailytLT variation for a given orbit node and lati-
tude band is about 12 minutes and the difference between the maximum asc/dsctLT at equator
amounts to 9 hours.
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Algorithm 4 Global projection of satellite orbits using the scatter plot function.In[1℄: from pylab import *In[2℄: from mpl_toolkits.basemap import Basemap,shiftgridIn[3℄: m = Basemap(projetion='moll',resolution='',area_thresh=10000.,/lat_0=30.,lon_0=0.)In[4℄: x,y = m(*meshgrid(self.lon,self.lat))In[5℄: m.satter(x[:,0℄,y[:,0℄,='w')In[6℄: m.drawoastlines()In[7℄: m.drawmapboundary()In[8℄: title('SABER on TIMED (tangent points): 1/1/2005')In[9℄: savefig('orbits.pdf')

Figure 2:Mollweide projection of the tangent points for each satellite orbit on 1/1/2005 (right
panel): day-time (open circles) and night-time (solid circles) measurements.

2.3 Daily Projection of Zonal Mean Temperature Profils

The irregular daily SABER observations at tangent points for the 1st January 2005 are arranged
to a new regular height-latitude (lev, lat) grid for the ascending and descending orbits separately,
as shown (Algorithm 4). The latitude dimension (ny) is divided into 10 bins of 10° starting from
-45° to 45° as the central point. The new vertical dimension (nz) has 50 layers of 2 km ranges
from 31 to 129 km. Thenumpyfunction masked_whereis applied to regrid the data by masking
values which lie outside of the given range and to mask out theinvalid values (-999). All data
within one grid of 10° and 2 km are averaged. This procedure isapplied for all orbits of day
defined by the dimension (no).

From the new gridded data a daily height-latitude picture ofthe zonal mean temperature (T̄asc)
and the zonal standard deviation (T′asc) for the ascending data are calculated obtaining the
thermal structure and dynamics of the atmosphere up to the lower thermosphere (120 km). The
left panel on Fig.3 reveals the warm stratopause (50 km, 270 K) and cold mesopause (85 km,
180 K) on the summer hemisphere (-45°) as well as the transition to the thermosphere. On
the right panel, the standard deviation of the longitudinaltemperature variation displays some
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Algorithm 5 Making a latitude-altitude grid of temperature data for theascending orbits with
horizontal bins of 10°.In[1℄: no = 14 #number of orbits per dayIn[2℄: ny = 10; dy = 10.In[3℄: nz = 50; dz = 2.In[4℄: lat = N.arange(-45.,-45.+ny*dy,dy,float)In[5℄: lev = N.arange(31.,31.+nz*dz,dz,float)In[6℄: tem = N.zeros((nz,ny,no),float)In[7℄: for o in range(no):...... for z in range(nz):...... for y in range(ny):...... dum = N.ma.masked_where(la<(lat[y℄-5.0),as)...... dum = N.ma.masked_where(la>(lat[y℄+5.0),dum)...... dum = N.ma.masked_where(le<(lev[z℄-1.0),dum)...... dum = N.ma.masked_where(le>(lev[z℄+1.0),dum)...... dum = N.ma.masked_where(dum<-999,dum)...... dum = dum.ompressed()...... temp[z,y,o℄ = mean(dum)
dynamical aspects caused by tidal waves above 80 km and in thewinter hemisphere (+45°), also
at lower altitudes, the latter caused by planetary waves activity, especially the stationary part.

Figure 3:Height-latitude cross-section of the zonal mean temperature (left) and zonal standard
deviation (right) on 1/1/2005. (Only the ascending data areused!)
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2.4 Harmonic Decomposition

The irregular longitude samples are rearranged using thetangent point longitude(xt p) infor-
mation for sorting the ascending (asc) and descending (dsc)satellite orbit nodes. The decom-
position of the ascending temperature variation (Tasc) along longitude into the first three zonal
harmonics (k = 1,2,3) and the zonal mean (k = 0)

Tasc(z,y,xt p) = A0(z,y)+
3

∑
k=1

Ak(z,y) ·cos[k ·xt p−φk(z,y)] (1)

is applied using least-squares approximation. This inverse problem is solved by singular value
decomposition (SVD). This method is given in a Fortran subroutinezonal.fwhich is translated
into a Python module using:> f2py -m - zonal zonal.f. Thisself-madelibrary zonal.so
can be imported into the Python program. To this aim, simply some additional information
aboutin/output arraysmust be append in the Fortran code, for example:cf2py intent(in): a.
These Python statements are regarded as comments in the Fortran syntax.
Several pictures of temperature disturbances give an overview of the dynamics of the middle
atmosphere. A height-latitude image of temperature amplitudes for the firstAasc(k = 1) and
secondAasc(k= 2) zonal harmonics is depicted on Fig.4. The left panel shows the amplitude of
the diurnal tide at higher altitudes. Though, the westward moving diurnal migrating tide can-
not be observed from sun-synchron satellite measurements due to its similar phase speed. The
observed tidal signal must be of non-migrating nature. At lower altitudes the slower planetary
waves with periods of several days and zonal wavenumber 1 aredominant in the winter hemi-
sphere. The right panel shows the signature of tidal and planetary waves having zonal wavenum-
ber 2. The picture of the mesosphere/lower thermosphere dynamics is somewhat inaccurate due
to the tidal effects which cannot be exactly analysed from orbiting satellite observations.

Figure 4:Height-latitude cross-section of zonal wavenumber amplitudes for k=1 (left) and k=2
(right) on 1/1/2005.

The reconstruction of the longitudinal structure using amplitude and phase from the first two
zonal harmonics is applied producing height-longitude plots in Fig.5 at mid-latitudes (left panel)
and at equator (right panel). These depict the vertical structure of the zonal harmonics. The
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signatures of planetary waves at stratospheric height are weak in contrast to the diurnal and
semidiurnal tidal waves. At 80 km the zonal wavenumber 1 increases. Above 90 km the zonal
wavenumber 2 is dominant which means that two maxima and minima are visible in the zonal
wave structure. This seems to correspond to the behaviour ofthe diurnal and semidiurnal tides.
The semidiurnal component is the dominant feature at MLT region. A view of the horizontal
structure of the temperature disturbances at several heights (51 km, 71 km, 91 km, 111 km) de-
picted on Fig.6 in a latitude-longitude cross-section shows a similar behaviour. At stratospheric
heights (51 km) the upward propagating planetary waves in the winter hemisphere (+45°) are
dominant having amplitudes of about 9 K. At mesophere (71 km)the planerary wave activ-
ity decreases and the equatorial forced tidal waves become important. In the MLT region the
amplitudes of tides can amount more than 20 K.

Figure 5:Longitude-height cross-section of the temperature disturbances at about 45°N (left)
and near the equator (right) on 1/1/2005.

Figure 6:Horizontal contour plots of temperature disturbances at 51km, 71 km, 91 km and 111
km height on 1/1/2005.
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2.5 Monthly Mean Data

The temperature data derived from the SABER instrument for January 2005 are used to obtain a
monthly mean picture, see Fig.7 (black contours). In comparison to that the greyscaling presents
the background climatology for January covering an altitude range from the troposphere to the
lower thermosphere generated by the general circulation model COMMA. The white contour
lines show the January mean of 2005 taken from the UK Met Officestratospheric reanalysis
data. These are regularly produced up to 0.1 hPa (about 60 km). The log-pressure height used
as the vertical coordinate of the COMMA model was interpolated into geometric height. This
approves a comparison between SABER and COMMA of the mesopause region height and
temperature. Small differences can be detected, because the circulation model uses climatolog-
ical data e.g. surface temperature and stationary planetary waves to generate the background
wind and temperature fields. The SABER temperature data are only averaged over the January
2005. Thus, there are some variances of the summer mesopauseregion height (< 5 km) and
temperature (< 10 km).

Figure 7:Height-latitude cross-section of monthly mean temperature data: shaded: COMMA
(Jan), black contour: UKMO (Jan05), white contour: SABER (Jan05)

3. Discussion and Outlook

The SABER limb sounding of the stratosphere-mesosphere-lower thermosphere on board the
TIMED satellite delivers temperature profiles covering thelatitude region of 50°N to 50°S. The
analysis of these data was presented in this work using the programming language Python.
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The procedure performed here shows the preliminary steps for investigating satellite measure-
ments with respect to global scale waves (e.g. planetary waves, tides) by producing daily maps
of zonal averaged temperature profils and its superposed harmonics. The monthly mean back-
gound temperature fields for January 2005 was calulated in comparison to the middle atmo-
sphere model background temperature and to stratospheric reanalysed temperature data from
UK Met Office (UKMO) model up to 60 km.
In the future, the SABER data may be assimilated into a mechanistic models (e.g., the MUAM,
Pogoreltsev et al., 2007) for generating an extended reanalyses up to the lower thermosphere.
The planetary wave analysis from UKMO could delivers the spectra of wave signals, which can
be forced in the models.
Information about gravity wave activity from satellite measurements can be derived filtering the
vertical wavelength (λz < 10 km) for each temperature profile. The application of the procedure
presented here can be used to illustrate gravity wave fields and to study modulation effects by
planetary waves.

Appendix

Figure 8:Snapshot of the Python-script documentation which is automatically generated using
pydoc. The HTML-document includes the directory, used modules and functions as well the
defined data arrays. All comments appear in this documentation for describing variables and
functions.
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Figure 9:Snapshot of a Python generated interface using the modulewx. This user interface is
build for investigation of the middle- and upper atmospheredynamics. There are many options
for selecting data base (e.g. UKMO), analysing planetary waves and long-term trends.
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