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Experimental investigation of stratorotational instability using a thermally stratified system:
instability, waves and associated momentum flux

Stratified vortices can be found from small to large scales in geophysical and astrophysical flows. On the one hand tornados and hurricanes can lead to devastation and even a large number of casualties, on the other hand the vortices distribute heat and
momentum in the atmosphere and are hence very important for a habitable environment on Earth. In the astrophysical context, accretion disks (from which solar systems are formed) can be seen as stratified vortices. For planet formation, understanding
the mechanisms that can result in an outward transport of angular momentum is a central problem. For a planet or star to be formed in a disk, angular momentum has to be carried away from its center in order to allow matter aggregation by gravity;
otherwise its rotation speed would be far too large, avoiding this matter aggregation (and the consequent star formation) to happen. In such gas systems, turbulence is the most likely mechanism to achieve such a large angular momentum transport.
However, it was shown that the flow profile of accretion disks is stable and the question arises how the turbulence can be generated. Among other candidates, the Strato Rotational Instability (SRI) has attracted attention in recent years. The SRl is a purely
hydrodynamic instability that can be modeled by a classical Taylor-Couette (TC) system with stable density stratification due to axial salinity or temperature gradients. Much insight can be obtained from a particular designed Taylor-Couette laboratory
experiment with axial stratification. In the scope of this study we investigate experimentally the phenomena associated with the instability and the nonlinear saturation of temperature stratified TC flows in a finite height cylindrical gap, and measuring the
angular-momentum transport in the linear and nonlinear regimes.

Experimental setup Measurement technique - Particle Image Velocimetry (PIV)
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Dashed line: Mean angular velocity in the SRI stable regime
(shaded area - standard deviation).
Solid line: analytical axially invariant solution of the angular
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(dashed/solid - negative/positive). The non-dimensional azimuthal velocity profile averaged over time (solid line) and the
non-dimensional axially invariant analytical Taylor-Couette solution (dashed line) is shown on the left side on each subfigure.
(a) Re = 300, Fr = 1.07; (b) Re = 400, Fr = 1.43; (c) Re = 500, Fr = 1.73; (d) Re = 600, Fr = 2.19.
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(a) Tilt @ of the vorticity axis of the SRI mode m = 1 as a function of Re (black dots). The solid line is a linear fit ¢ = 1/6Re — 35.7. > T
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Stationary wave solution that consists of two coupled edge or
boundary waves expressed by the stream function
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Toy model solution for ¢ /2, k = 1000, A = 1. (a) Red/blue colour represents
positive/negative stream function. (b) Reynolds stress as a function of the
boundary wave phase shift ¢. There exists an optimal ¢ = /2

where Reynolds stress is maximised.
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