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Motivation dust contribution to needs to be transformed  Single-scattering albedo (w) is split into
backscatter coefficient  for application to AOD the contributions of dust (d) and non-dust (nd)
The availability of of l-specific lidar p (5-5,,)(1+5) AOD, s, aerosols to get non-dust and BC-related AAOD
for the main aerosol species together with advancements in the analysis of R=—"—- X= =R — — . _ _
passiva romot S Pe 9 Wit oo i o (6,5,,)(1+5) —> X, AOD w=X,w4+X W ; AAOD  =(1-w )AOD  ; AAOD, =(1-w,)AOD,,
adapting methodologies that have been developed for the analysis of lidar data
to the application to data from new sources. Specifically, the particle lidar ratio
(S) and the particle linear ization ratio () as provi in the AERONET 2
version 3 level 2.0 aerosol inversion product can be used for (i) obtaining DuSt Propertles
reference values of pure aerosol types in regions where a long-term deployment -
of lidar instruments is not feasible (Shin et al., 2018), (ii) inferring AOD and
AAOD of the dust and dust in dust: ining mixed aerosol
plumes (Shin et al., 2019a), and (iii) a refined aerosol-type classification that is
capable of ing between ical and ical particl
as well as between ing and bing partit (Shin et al., 2019b).

nd?

Knowledge of the particle lidar ratio (S) and the particle linear depolarization ratio (5)
for different aerosol types allows for aerosol typing and aerosol-type separation in
lidar values igi from i lidar
observations but might also be obtained from the inversion of AERONET data.

Shin et al. (2018) have investigated the consistency of spectral S and & provided in
the AERONET version 3 inversion product for observations of undiluted mineral dust
in the vicinity of deserts. Pure dust iti are i ified by an Ang

exponent < 0.4 and a fine-mode fraction <0.1.
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AAROD components

Absorption aerosol optical depth (AAOD) as from AERONET measurements provides a .
of the light. ing properties of the col aerosol loading. However, it Sahal'an
is not an i I-type-specifi partic if several types of
absorbing aerosols, for instance black carbon (BC) and mineral dust, are present in a
mixed aerosol plume. The lidar-based technique for the separation of dust and
non-dust aerosol types of Tesche et al. (2009) has been refined for the use with o.g o‘ 3 L 0.‘2 0.‘0 L o.‘ 0] L olz L o‘.s
AERONET direct sun and inversion products. Particle Linear Depolarization Ratio (1020 nm) Y
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The values of spectral S are found to vary for the different source regions but
show an i with ing The feature to
AERONET, ieving an il inthei inary part of the ive index with
i The llest values of S = 35-45 sr are found for mineral dust
from the Great Basin desert, while the highest values of 50-70 sr have been inferred
from AERONET observations of Saharan dust. Values of S at 675, 870, and 1020 nm
seem to be in with avail lidar observations, while those at
440 nm are up to 10 sr higher than the lidar reference.
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AAOD (dust, non-dust, total)

We extend the methodology to retrieve AAOD related to non-dust aerosol (AAOD, ) and BC (AAOD, ). We test the method at selected AERONET sites that are frequently
affected by aerosol plumes that contain a mixture of Saharan or Asian mineral dust and bit burning smoke or P ic p i P y. We find that
aerosol optical depth (AOD) related to mineral dust as i with our is freq smaller than de AOD. This that the latter is not an
ideal proxy for estimating the contribution of mineral dust to mixed dust plumes. We present the results of the AAOD,_ retrieval for the selected AERONET sites and

them to coinci values provil in the Copernicus Atmosphere Monitoring System aerosol reanalysis. We find that modelled and AERONET AAOD,. are
most consistent for Asian sites or at Saharan sites with strong local anthropogenic sources.
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The sp of & shows a i of 0.26-0.31 at 1020nm and decreasing values

as wavelength decreases. AERONET-derived & values at 870 and 1020 nm are in line
3 f3 3 1 1 1 with the lidar reference, while values of 0.19-0.24 at 440 nm are smaller than the

AeIOSOI-tYPe CIaSSIflcatlon ba'sed in lnveISIOn pIOduCts independent lidar observations by a difference of 0.03 to 0.08. This general behaviour

We propose an aerosol-type classification based on the particle linear depolarization PLDR is consistent with earlier studies based on AERONET version 2 products.

ratio (PLDR) and singl ing albedo (SSA) provi in the AERONET version 3 1020 nm 0.5

level 2.0 inversion product. Our new method allows for a refined i ion of

mineral dust that occurs as a mixture with other absorbing aerosols: pure dust (PD),
dust-dominated mixed plume (DDM), and pollutant-dominated mixed plume (PDM). We
test the aerosol classification at AERONET sites in East Asia that are frequently

affected by mixtures of Asian dust and bit burning smoke or

pollution. Pollution aerosol | MR
We find that East Asia is strongly affected by pollution particles with high occurrence mixture (PDM)
frequencies of 50% to 67%. The distribution and types of pollution particles vary with
location and season. The frequency of pure dust and dusty aerosol mixture is slightly
lower (34% to 49%) than i i i . Pure dust i have been
detected in only 1% of observations. This suggests that East Asian dust plumes
generally exist in a mixture with pollution aerosols rather than in pure form.
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In the next stage of this work we intend to expand the aerosol-type classification and AAOD,
retrieval presened here to the entire AERONET data base. We will then use the information obtained in
this way for aerosol-type specific optical and microphysical properties as input to radiative o o
transfer calculations. This will allow us to compile a global data set of the direct Appllcatlon
References radiative effect of individual aerosol types. Such a measurement-
based data set can be used as an additional benchmark We have also considered data from
Shin et al. (2018), On the spectral for the validation of satellite observations selected AERONET sites that are represen-

depolarisation and lidar ratio of mineral dust i tative of anthropogenic pollution (GSFC, ISPRA, and
provided in the AERONET version 3 inversion and the output of regional and pog P {

product, ACP, 18, acp-18-12735-2018. climate models.
Shin et al. (2019a), Technical note: Absorption aerosol optical N
depth components from AERONET observations of mixed dust dust (Cape Verde, Banizoumbou, and
plumes, AMT, 12, amt-12-607-2019. Dakar). We find that average aerosol properties
Shin et al. (2019b), Aerosol-type classification based on AERONET obtained for aerosol types in our PLDR-SSA-based
version 3 inversion products, AMT,, 12, amt-12-3789-2019 classification agree reasonably well with those
Tesche et al. (2009), Vertically resolved separation of dust and smoke obtained from AERONET measurements at
over Cape Verde by using multiwavelength Raman and polariza- sites that are considered to be

tion lidars during Saharan Mineral Dust Experiment 2008, "
JGR, 114, 2009JD011862. M AKE OUR representative for aerosol types

A PL ANET of different origin.
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