
S t l S f R fl t Fi ld O M itiSpectral Surface Reflectance Fields Over MegacitiesSpectral Surface Reflectance Fields Over MegacitiesSpectral Surface Reflectance Fields Over Megacitiesp g
1 1 2 2 3 3 4 4 4 5B Mey 1 M Wendisch 1 J Heintzenberg 2 B Heese 2 A Krämer 3 H Jahn 3 M v Schönermark 4 M Schwarzbach 4 U Putze 4 J Mao 5 B.Mey , M. Wendisch , J. Heintzenberg , B. Heese , A. Krämer , H. Jahn , M. v. Schönermark , M. Schwarzbach , U. Putze , J. Mao 

1 2 31 Institute for Atmospheric Physics, Johannes Gutenberg – University Mainz (JoGu) ,  2 Leibniz – Institute for Tropospheric Research (IfT), Leipzig, 3 Bielefeld School of Public Health, University Bielefeld (UBI) , p y , g y ( ) , p p ( ), p g, , y ( ) ,
4 Institute of Space Systems University Stuttgart (IRS) 5 School of Physics Atmospheric Science Department Peking University Beijing PR China (PKU)4 Institute of Space Systems, University Stuttgart (IRS) , 5 School of Physics, Atmospheric Science Department Peking University Beijing, PR China (PKU)

1 Introduction 3 Results1. Introduction 3. Results

Megacities are a major source of particulate matter in the atmosphere These aerosol particles have an influenceMegacities are a major source of particulate matter in the atmosphere. These aerosol particles have an influence
on the health of people living in Megacities because they can affect the respiratory systems through inhalation It ison the health of people living in Megacities because they can affect the respiratory systems through inhalation. It is

I Fi 5A ti i f th i b d lb dimportant to include aerosol particles in climate models In Figure 5A a timeseries of the airborne measured albedoimportant to include aerosol particles in climate models.
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As the satellite cannot distinguish between surface and atmospheric signal the retrieved AOD significantly depends on the accuracy of the
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As the satellite cannot distinguish between surface and atmospheric signal the retrieved AOD significantly depends on the accuracy of the reflecting surfaces (C) in the timeseries as well as in the Figure 5surface reflectance fields which are used for the retrieval The combination of the spectral highly resoluted SMART– Albedometer (Spectral
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methodology will then be applied to a field campaign in the Pearl River Delta (PRD) in southern China Lπ ↑ F ↑ ctmethodology will then be applied to a field campaign in the Pearl River Delta (PRD) in southern China. (R = α with and )
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I ↑ F ↑ In Figures 3 and 4 schematics of the image acquisition isimagesI λ↑ F λ↑ Figure 1
In Figures 3 and 4 schematics of the image acquisition isimages Figure 1
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The airborne measurements were performed with the Partenavia P68B
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l t fi ti iThe airborne measurements were performed with the Partenavia P68B least five consecutive images.

research aircraft Figure 1 (center) shows the aircraft at the airport Halle
least five consecutive images.

research aircraft Figure 1 (center) shows the aircraft at the airport Halle
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The analysis of the ground based measurements withinstrumentation with some technical details is presented in Table 1. Solid angle areaviewing angles y g
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Measured quantity Spectral range Resolution Remarks
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of the reflection and the retrieval of the BidirectionalAlbedometerq y p g of the reflection and the retrieval of the BidirectionalAlbedometer
radiance inlet

Aircraft irradiance F ↓ 300 950 nm 2 3 nm Temperat re Reflection Distribution Function (BRDF) Figure 6
radiance inlet

Aircraft irradiance Fλ↓ 300–950 nm 2-3 nm • Temperature- Reflection Distribution Function (BRDF). Figure 6
top controlled Housing presents a qualitative 3D-Plot of the reflected radiationtop controlled Housing
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presents a qualitative 3D Plot of the reflected radiation
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th f t Q lit ti l th t i l(aircraft top)

Aircraft irradiance F ↑ 300-950 nm 2-3 nm the surface type grass. Qualitatively, the typical
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reflection characteristic of green vegetation in a bowly
stabilized [1 2]bottom reflection characteristic of green vegetation in a bowl
stabilized [1,2]

di I ↑ 300 950 2 3 shape is visible This means that the reflection isFigure 3radiance Iλ↑ 300-950 nm 2-3 nm shape is visible. This means that the reflection isFigure 3
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Table 1
observing angles(g )

• 1920x1080 pixelTable 1 • 1920x1080 pixel

B G d b d Figure 6B Ground-based Figure 6

Ground-based measurements of the angular dependent reflection ofGround based measurements of the angular dependent reflection of
diff t f t f d ith lf b ilt i t t f thdifferent surface types were performed with a self-built instrument of thedifferent surface types were performed with a self built instrument of the
IRS It bl th f diff t b t ti tIRS. It enables the usage of different sensors by a rotating stage as ag y g g
universal platform The measurements for the presented field experimentuniversal platform. The measurements for the presented field experiment
were performed with a matrix camera in the green and near infrared Th i l l d ith d t th d d fwere performed with a matrix camera in the green and near infrared The pixels are analyzed with regard to the dependency of

4 Outlookspectral channel Figure 2 shows the working principle (left) and a photo
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the radiance for different viewing angles To obtain 4. Outlookspectral channel. Figure 2 shows the working principle (left) and a photo the radiance for different viewing angles. To obtain
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• Measured albedo and reflectance will be nonlinearly extrapolated to surface values on the basis of annecessarycircle • Measured albedo and reflectance will be nonlinearly extrapolated to surface values on the basis of an necessary.Figure 2
circle

existing routine for albedo extrapolationTherefore the spectral behaviour of the camera was
Figure 2

existing routine for albedo extrapolation.Therefore the spectral behaviour of the camera was
l d ith h t d t i • Pixel values of the CCD camera (airborne) will be converted to surface reflectance valuesanalyzed with a monochromator and a geometric • Pixel values of the CCD camera (airborne) will be converted to surface reflectance values.analyzed with a monochromator and a geometric
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• Comparison of obtained reflectance fields with those used for satellite aerosol retrievalcalibration was performed to obtain the distortionboom
• Comparison of obtained reflectance fields with those used for satellite aerosol retrievalp

parameters By combining the spectrally resolved
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• Application of the measurement and analysis strategy to a field experiment in Guangzhou (PRD PR China)
parameters. By combining the spectrally-resolvedcamera
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• Application of the measurement and analysis strategy to a field experiment in Guangzhou (PRD, PR China).
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radiance data of the SMART Albedometer with the
camera pp y gy p g ( , )radiance data of the SMART – Albedometer with the

Measurement
spatially-resolved camera data radiance values for each

Measurement 
area of the spatially-resolved camera data radiance values for eacharea of the 
camerarotation pixel covered by the solid angle of the radiance inlet arecamerarotation
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pixel covered by the solid angle of the radiance inlet are
d i d T bt i f fl t th dIn addition, measurements with a small compact Raman lidar were [1] Wendisch M P Pilewskie E Jäkel S Schmidt J Pommier S Howard H Jonsson H Guan M Schröder B Mayer (2004) Airbornederived. To obtain surface reflectances the measured, p

performed in Leipzig to obtain the aerosol extinction coefficient as well as
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titi h t b li t l t d t thperformed in Leipzig to obtain the aerosol extinction coefficient, as well as measurements of areal spectral surface albedo over different sea and land surfaces, J. Geophys. Res., 109, D08203, doi:10.1029/2003JD004392.quantities have to be nonlinear extrapolated to the

Sun photometer measurements which are performed regularly at IfT in the
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[2] Wendisch M B Mayer Geophys Res Lett Vol 30 No 4 1183 doi:10 1029/2002GL016529 2003
q p
surface level Herefore lidar and AERONET data is usedSun photometer measurements, which are performed regularly at IfT in the [2] Wendisch M., B. Mayer, Geophys. Res. Lett., Vol. 30, No. 4, 1183, doi:10.1029/2002GL016529, 2003surface level. Herefore lidar and AERONET data is used

frame of the aerosol robotic network (AERONET) as input for the radiative transfer model calculationsframe of the aerosol robotic network (AERONET). as input for the radiative transfer model calculations.


