Vertical distribution of ice crystals in Arctic mixed-phase clouds derived from airborne spectral radiation measurements

· Mixed-phase clouds showed liquid layer at cloud top precipitating ice below

Fig. 3: Cloud representation in the radiative transfer simulations (left panel). In measurement (April 7) of ice crystal and liquid water droplet concentrations (a), li water content (b), and asymmetry parameter (c)

Radiative Transfer Simulations

[m]

Altituda

- Radiative transfer simulations of R, libRadtran, DISORT 2, 1-dimensional, plan parallel
- Scaling of in situ measurements used as model input is necessary to obtain the measured R at λ < 1400 nm
 Cloud optical thickness is underestimated due to cloud inhomogeneities
 Higher ice absorption observed than modeled (1450 1600nm wavelength)

tance using n

[1] Wendisch, M., Muller, D., Schell, D., and Heintzenberg, J (2001). An airborne spectral albedometer with active horizon tal stabilization. J. Atmos. Oceanic Technol., 18, 1856–1866. [2] Wagner, T. et al. (2007). Comparison of box-air-mass-factors and radiances for MAX-DOAS geometries calculated from different UV/ visible radiative transfer models. Atmos. Chem. Phys. 7, 1809-1833

flight CALL SO track

MODIS

a) April 4, 2008, 11:05 UTC	b) April 10, 2008, 11:31 UTC
$I_s = 26.0, I_P = 1.9$	$I_s = 26.3, I_p = 2.9$

Fig. 9: Photographs of backscatter glories during ASTAR 2007 above mixed-phase clouds.

Results

· Backscatter glories are reproduced by Case A and C, with less pronounced glory for Case C

- Mixed-phase cloud top layer (Case C) does suit the observations during ASTAR Case D dominated by ice crystals phase function (no mixture) located above the liquid water layer
- C → This case can be ruled out

er pa Its con

 Backscatter angles larger than 175°
 Indication for liquid water droplets at cloud top · Simultaneous observation of moderate ice indices

Simulation of Backscatter Glory [3]

3-dimensional Monte Carlo code MYSTIC

· Results converted into RGB colors (CIE system)

oanels show onverted into zation of the glory is g

6. Outlook

- Further systematic measurements are necessary
 Aircraft measurement campaign SoRPIC (Solar Radiation and Phase Discrimination of Arctic Clouds)
 in April 2010 / Svalbard → Operating SMART-Albedometer on POLAR 5 (AWI)
 → Operating in situ instrumentation (Polar Nephelometer, CPI, FSSP, LaMP)
 → Operating in situ instrumentation (Polar Nephelometer, CPI, FSSP, LaMP)
 - - → Operating hyperspectral camera system Specim AISA Eagle (AWI)→ Operating airborne lidar system (AWI)

[3] Mayer, B., Schröder, M., Preusker, R., and Schüller, L. (2004) Remote sensing of water cloud droplet size distributions using the backscatter glory: A case study. Atmos. Chem. Phys. 4: 1255-1263.