Collocated Measurements of Boundary-Layer Cloud Microphysical and Radiative Properties and Comparison with Satellite Retrievals [1]

Frank Henrich^{1,3}, Holger Siebert², Evelyn Jäkel³, Raymond Shaw⁴, Manfred Wendisch^{1,3}

GUTENBERG ¹ Leipzig Institute for Meteorology (LIM), University of Leipzig, Leipzig, Germany ² Leibnitz Institute for Tropospheric Research (IfT), Leipzig, Germany

Radiation Measurements

• 3 grating spectrometers • 2 optical inlets for upwelling radiance I_{λ} and irradiance F_{λ}

Spectral

. ranαe

400 - 1000

400 - 1000

nm

1000 - 2000

Microphysical Properties

 $\int \frac{\mathrm{d}N}{\mathrm{d}D}(D^{'}) \ \overline{D^{'^3}} \ \mathrm{d}D^{'}$

 $\frac{3}{2}\int \frac{LWC(z)}{R_{\rm eff}(z)\cdot\varrho}$

Resolution

(FWHM)

2 – 3 nm

2 – 3 nn

9 – 16 nm

 $r_{\lambda} = \frac{\pi I_{\lambda}^{\uparrow}}{I_{\lambda}}$

 F_{λ}^{\downarrow}

- No Cloud - Above Clou

1200 1400 1600

length λ (nm)

Fig. 2: Examples of spectra of upwelling radiances I_{a}^{\uparrow} for cloud-free conditions and above a cloud.

W2

³ Institute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany ⁴ Department of Atmospheric Physics, Michigan Technological University, Houghton, U.S.

1. Introduction

- Interaction Between Cloud Properties and Radiation
- Cloud properties (i.a. effective cloud droplet radius R_{eff}, optical thickness r, liquid water content
- LWC, particle surface area PSA) highly influence the adiation budget and radiative forcing Precise and continuous cloud microphysical data from remote sensing applications are essential to quantify

Biases in Satellite Retrievals

Dependent on the spectral resolution of the instrument there is a bias in the retrieval of R_{eff} and r due to: 3-D radiative effects, surface albedo, absorption due to aerosol particles
 Approximations in retrieval algorithms may lead to further uncertaintes in retrievals of cloud properties

Measurement Quantity

VIS – spectral upwelling irradiance F^A_i

spectral upw radiance I

 $\rho_{\lambda} =$

 $R_{\text{eff}} =$

 $\tau =$

elling

 F_{λ}^{\uparrow}

 $\overline{F_{\lambda}^{\downarrow}}$

cloud top reflectivity r_λ and albedo ρ_λ are calculated

NIR – spectral upw radiance I

VIS

- → Validation of cloud properties derived from satellite measurements is needed

2. Instrumentation

· Spectral radiation measurements above

the cloud In situ measurements of microphylical properties within the cloud by instruments on Airborne Cloud Turbulence Observation System (ACTOS) [2]

- →Truly collocated measurements → Eliminates temporal + spatial displacement in inhomogeneous
- . cloud field

Fig. 1: The radiation instrumentation is installed underneath the helicopter and ACTOS is carried by means of a 140 m long rope. One close-up shows the housing of the optical intels for upwelling irradiance f¹₄ (transparent semi-spheres) and radiance 1⁴₄ (flat opening). A photo of the helium-right side.

3. Measurements during Eucaari 2008 [3]

(European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions) boundary-layer clouds in 2000m height, cloud cover 4/8 0.4 sr.1 0,3 È → No Clouds (W m 0.2 Radiance 0, → Above Clouds 0,0 800 1000

Two Cloud Cases on May 18

Fig. 3: Time series of in situ measured effective droplet radius R_{eff} from the PVM and upwelling irradiance F_{i}^{b} for CC1 (left panel) and CC2 (right panel). The grey areas and error bars indicate the measurement uncertainties for the radiation measurements and the in situ measured R_{eff} from the PVM, respectively.

Results

No significant correlation between cloud albedo and effective droplet radius Radius

[1] Henrich, F., H. Siebert, E. Jäckel, R. A. Shaw, and M. Wendisch (2010), Collocated Measurements of Boundary-Layer Cloud Microphysical and Radiative Properties and Comparison with Satellite Retrievals, in revie at J. Geophys. Res.

[2] Siebert, H., H. Franke, K. Lehmann, R. Maser, E. W. Saw, D. Schell, R. A. Shaw, and M. Wendisch (2006), Probing finescale dynamics and microphysics of clouds with helicopter-bome measurements, *Bull. Amer. Meteorol. Soc.*, 87, 1727–1738.

[3] Kulmala, M., et al. (2009), Introduction: European Integrated Project on Aerosol Cloud Climate and Air Quality interac- tion (EUCAARI) - integrating aerosol research from nano to global scales, Atmos. Chem. Phys., 9, 2825–2841.

Retrieval of Microphysical Cloud Properties

Fig. 5: Time series of the in situ measured (PVM) and retrieved effective droplet radius $R_{\rm eff}$ for CC1 (top-left pane) and CC2 (top-right pane), (bottom pane) Time series of estimated and retrieved optical thickness r for CC2. The grey areas and error bars indicate the measurements (not shown for the estimates of r) and the retrieved, respective).

Results

 Differences between two cloud cases, for CC2 measurements

5. Comparison with Satellite Retrieval

• MODIS data from May 18 -> data from complete flight track, 45 minutes after two cloud cases

Fig. 5: Histogram of in situ measurements (IS) and MODIS retrieval (MR) of R_{att} for the full flight track (top-left panel) and including the retrieval from the radiation measurements on the helicopter (HR) for CC1 (bottom-left panel) and CC2 (bottom-right panel). (Top-right panel): Histogram of IS, HR and MR of r.

Results

- Good agreement between in situ measurements and helicopter retrieval, especially for $R_{\rm eff}$ MODIS retrieval of $R_{\rm eff}$ 2-3 times higher than in situ measurements MODIS retrieval of r 2 times lower than in situ measurements
- →Low cloud fraction, 3D-radiative effects

6. Outlook

- Further systematic measurements are necessary
 In November 2010: Barbados Field Study
 Avew, compact radiation system + Imaging Spectrometer + 3-D Modelling → Inhomogeneity Effects

