

TROPOSPHERIC RESEARCH

Cloud Property Retrievals using Ship-based Spectral Transmissivity Measurements

Member of the

M. Brückner^{(1)*}, A. Macke⁽¹⁾, M. Wendisch⁽²⁾, T. Kanitz⁽¹⁾, B. Pospichal⁽²⁾

(1) Leibniz-Institute for Tropospheric Research (IfT), Leipzig, Germany (2) Leipzig Institute for Meteorology (LIM), University of Leipzig, Germany * contact : mbrueck@rz.uni-leipzig.de

UNIVERSITÄT LEIPZIG

1. Goals

- Ship-based measurements of spectral cloud transmissivity to retrieve cloud optical thickness and effective radius
- Apply improved and accelerate spectral retrieval algorithm
- Evaluate cloud radiative energy budget

2. Instrumentation

4. Methodology **Plane-parallel (PP) Radiative** ship-based observations **Transfer Model**^[1] Model $I^{\downarrow}_{\lambda, \text{mod}}(z_0)$ and $F^{\downarrow}_{\lambda, \text{mod}}(z_0)$ at sea Observation of $I^{\downarrow}_{\lambda,\text{obs}}(z_0)$ and $F^{\downarrow}_{\lambda,\text{obs}}(z_0)$ at sea level z_0 from CORAS level z_0 (using optical and microphysical observations) Calculate spectral transmissivity at sea level

Cloud property retrieval^[2] using spectral transmissivity

Spectral cloud retrieval with modeled transmissivity $T_{\lambda,
m mod}$ and observed transmissivity $T_{\lambda,obs}$ to retrieve optical thickness τ and effective radius $r_{\rm eff}$

Fig. 2: Located Container on the Helicopter deck of RV Polarstern

Tab. 1: Overview of optical inlets from CORAS (COmpact RAdiation measurement System)

Ship - based	Measured Quantity	Spectral Range	Resolution
	Downward Irradiance F_{λ}^{\downarrow}	290-2200 nm	2-3 (VIS)/15 (NIR) nm
	Downward Radiance I_λ^\downarrow	290-2200 nm	2-3 (VIS)/15 (NIR) nm

3. Examples

thickness and effective radius

(solid line) and 25 µm (dashed line)

Fig. 6: Look up table for spectral cloud retrieval using modeled transmissivity (PP-RTM) and spectral slope fit through normalized transmissivity at *SZA=30*°

- Information on optical thickness and effective radius
- •Normalization removes effect of spectrally correlated errors ^[2] •Less sensitivity to effective radius for optical thickness lower then 5

5. Outlook

700

slope

iteration step τ_1 , r_{eff} =const. iteration step τ_2 , $r_{eff}\text{=const.}$

• • •

Fig. 7: Cruise track from ANT-XXVIII/5

(b) Fig. 9: Corresponding cloud situation for Fig. 10 from full sky imager

transmissivity at 532 nm

iteration step τ_3 , r_{eff} =const.

iteration step $r_{eff 1}$, τ =const. iteration step $r_{eff 2}$, τ =const. iteration step $r_{eff 3}$, τ =const. . . .

Fig. 11: Sketch of zooming retrieval technique; red cross marks the observation

- Zooming retrieval technique for optical thickness larger then 5
- Classify differences in retrieved cloud parameters by cloud fraction and cloud vertical inhomogeneities from full sky imager, lidar and microwave radiometer
- Retrieve cloud optical thickness and effective radius using 3D Monte-Carlo RTM to quantify 3D cloud effects on modeled spectral transmissivity for different cloud types

[1] Mayer, B. and Kylling, A.: Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use, Atmos. Chem. Phys., 5, 1855–1877, 2005, References: http://www.atmos-chem-phys.net/5/1855/2005/. [2] McBride, P.J. et al.: A spectral method for retrieving cloud optical thickness and effective radius from surface-based transmittance measurements, Atmos. Chem. Phys., 11, 7235-7252, 2011

Printed by Universitätsrechenzentrum Leipzig