

Investigation of Arctic mixed-phase clouds during VERDI and RACEPAC:

A. Ehrlich¹, E. Bierwirth¹, T. Carlsen¹, M. Schäfer¹, M. Wendisch¹, A. Herber², R. Neuber², J. Graeser², L. Schmidt², A. Afchine³, U. Bundke³, M. Krämer³,

A. Luebke³, J. Meyer³, A. Petzold³, A. Abdelmonem⁴, C. Hoose⁴, M. Schnaiter⁴, P. Vochezer⁴, K. Weixler⁴, H. Bozem⁵, P. Hoor⁵, S. Molleker⁵, M. Klingebiel⁵, R. Weigel⁵, J. Fugal^{5,6}, O. Schlenczek^{5,6}, S. Borrmann^{5,6}, J. Schneider⁶, C. Schulz⁶, A. Roth⁶, G. Mioche⁷, O. Jourdan⁷, M. Dollner^{8,9}, A. Walser^{8,9}, B. Weinzierl^{9,8}, A. Minikin⁹, P. Herenz¹⁰, F. Stratmann¹⁰, A. de Lózar¹¹

1 Leipzig Institute for Meteorology (LIM), University Leipzig, Germany, 2 Alfred Wegener Institute for Marine and Polar Research, Bremerhaven, & Potsdam, Germany, 3 Forschungszentrum Jülich, Germany, 4 Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Germany, 5 Institute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany, 6 Max Planck Institute for Chemistry, Mainz, Germany, 7 Laboratoire de Météorologie Physique, Université Blaise Pascal, Clermont-Ferrand, France, 8 Meteorological Institute Munich (MIM), Ludwig-Maximilians-Universität, München, Germany, 9 Institute for Atmospheric Physics, German Aerospace Center, Oberpfaffenhofen, Germany, 10 Leibniz Institute for Tropospheric Research, Leipzig, Germany, 11 Max-Plank Institute for Meteorology, Hamburg, Germany a.ehrlich@uni-leipzig.de

1: Photograph (top) and satellite image (bottom, MODIS) of Arctic mixed-phase clouds.

1. Introduction (low level cloud, over ocean, subarctic summer atmosphere (low level cloud, τ =10, subarctic summer atmosphere 100 Relevance of Arctic boundary-layer clouds • Arctic climate most sensitive to climate change • Arctic clouds play a significant role in the Arctic energy budget • Variety of formation processes solar - Convection above open water, mixing, radiative cooling terrestrial • Variety of microphysical and optical properties - Liquid, ice, mixed-phase, ice crystal shape -300-300 Why Arctic ?

- Arctic is an ideal test bed for cloud research • Often no cirrus
- Different situations with open water, sea ice
- No restriction due to commercial air traffic
- Easy coordination of flight pattern

Fig. 2: Cloud radiative forcing at the surface of different optical depth τ and two solar zenith angles. Simulations are done for cloud above open ocean [2].

Fig. 3: Cloud radiative forcing at the surface in dependence of surface albedo. Simulations are for a cloud with optical depth of $\tau = 10$ and for two different solar zenith angles [2].

2. Airborne Field Campaigns (Inuvik/NWT/Canada)

Study of the Vertical Distribution of Ice in Arctic Clouds (2012)

• 25 April – 17 May, 13 Flights, 49 Flight Hours, 1 Aircraft • Stable atmospheric conditions, colder temperatures, more sea ice

Radiation-Aerosol-Cloud Experiment in the Arctic Circle (2014)

• 28 April – 23 May, 16 Flights, 88 Flight Hours, 2 Aircraft • Frequent frontal activity, warmer temperatures, less sea ice

Fig. 4: Flight tracks of VERDI and RACEPAC.

Fig. 5: Mean radio soundings for the period 25 April-24 May during VERDI (left) and RACEPAC (right).

3. Some Highlights

In situ cloud particle probing **VERDI 2012 (23 hours)** 0°C Warm 10^{2} WBF process 10¹ 10° ອ 10⁻¹ Z 40-100% 30-40 20-30 10-2 15-20 10-15 10-3 5-10 0-5 240

10²¹

 -10^{1}

5 ≤ 10°

ກາວ 10^{−1}

10⁻²

10-3

10-3

10-4

0.75

Fig. 10: Bi-modal droplet size distributions observed at cloud top by CDP (left) and SID-3 (right), see [1].

Fig. 9: Nixe-CAPS total particle concentration (3-937 μ m).

- Average Cluster 1 Irregular shap 0.84 Ice phase Cluster 2 Cluster 3 Cluster 4 0.78 Spherical shape Liquid phase

Fig. 11: Clustering of scattering phase functions (left) observed by the Polar Nephelometer. Asymmetry parameter as function of PCA parameters (right).

Scattering Angles (°)

Instrumentation

• Polar 5 and 6 (Basler BT 67) operated and funded by Alfred-Wegener Institute for Polar and Marine Research

Polar 6 = In Situ

- Cloud particle sampling
- Aerosol particles
- Trace gas CO/CO2

during VERDI and RACEPAC.	VERDI	RACEPAC	
	Р5	P5	P6
Standard Meteorology (wind vector, p, T, rH)	Х	х	х
Drop Sondes (wind vector, p, T, rH)	х	х	
Cloud Microphysics I (NIXE-CAPS, SID-3, CCP, CAS-DPOL, PIP)	х		х
Cloud Microphysics II (Polar Nephelometer, HALO-HOLO, PHIPS)			х
Aerosol Mass Spectrometer (ALABAMA, CToF-AMS)	х		х
Aerosol Sensors (OPC, CPC, UHSAS, SP2)			х
Trace Gas CO/CO ₂			х
SMART Albedometer (spectral albedo and reflectivity)	Х		х
AISA-Eagle (spectral imaging)	Х		х
Digital Camera (180° Fisheye)	Х		х
Airborne Mobile Lidar (AMALi)	х		х
Sun Photometer	х		х

Flight strategy

• Cloud and atmosphere sampling combined by remote sensing (500 ft to 10.000 ft)

Polar 5 = Remote Sensing

- Cloud radiative properties

- Horizontal variablity

- **RACEPAC:** collocated measurements with <200 m horizontal displacement (<5min in time, for safety reasons)
- Coordination of A-Train overpasses

Fig. 6: Flight strategy for collocated measurements during **RACEPAC.** (left) Horizontal and vertical remote sensing.

(middle) Flight track of P5 and P6 on a MODIS image. (right) Combined sampling and guidance of P6 by remote sensing.

A-Train satellite overpass

• 20 May 2014, 21:00 UTC (only Polar 5) • 45 min / 80 NM along track, 4 cross track legs à 25 NM

Overflights of ground station at Tuktoyaktuk

- Aerosol sampling, 29 April 17 May Cloud condensation nuclei, DMT CCNc, CPCs,
- Black carbon, MAAP, SP2
- Automatic weather station
- 4 low level overflights (3/6/11/13 May)

Flight track and CloudSat profile on 20. May 2014. Fig. 7:

14: (top) Profile of extinction coefficient from AMALi Fig. observing low cloud formation in aerosol rich environment. (right) Imaging of cloud optical thickness with the AISA-Eagle imaging spectrometer illustrating horizontal cloud inhomogeneieties.

4. Modeling Activities

• DSN, direct numerical simulation (MPI Hamburg, lower Figure) • COSMO- ART used as an LES model (KIT, right Figure)

100 200 300 400 500 600 700 270 m

[1] Klingebiel, M., de Lozar, A., Molleker, S., Weigel, R., Roth, A., Schmidt, L., Meyer, J., Ehrlich, A., Neuber, R., Wendisch, M., and Borrmann, S.: Arctic low-level boundary layer clouds: in situ measurements and simulations of mono- and bimodal supercooled droplet size distributions at the top layer of liquid phase clouds, Atmos. Chem. Phys., 15, 617-631, 2015. [2] Wendisch, M., Yang, P., and Ehrlich, A., eds.: Amplified climate changes in the Arctic: Role of clouds and atmospheric radiation, vol. 132 (3), 1-34, Sitzungsberichte der Sächsischen Akademie der Wissenschaftliche Klasse, S. Hirzel Verlag, Stuttgart/Leipzig, 2013

Gedruckt im Universitätsrechenzentrum Leipzig

Time [min]