Measurements of solar and terrestrial heating and cooling rate

profiles in Arctic and sub-tropic stratocumulus
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1 Introduction

Motivation: Main goal: Heating rates:
e Stratocumulus strongly influences the surface Quantifying vertical profiles of turbulent and radiative fluxes in the cloudy AT (F%op+FZot)—(FIop—Fiot) L
. . . . . — = within the layer (z,— z,)
energy budget. boundary layer in the central Arctic and sub-tropics using slow moving At p ¢p (2¢—2p)
* Surface warming or cooling depends on the cloud platforms. Pyreeo-/Pyranometer:

and atmosphere properties. Research questions: « Solar: 0.2 -3.6 um; terrestrial: 4.5 - 42 um
How do the different energy fluxes influence the cloud evolution in Hm, ! H

* Evaporative and radiative cooling at the top of X « Slow response sensor: <18 s for 95 % response
stratocumulus control the cloud dynamics. both areas: - correction needed
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Fig 1: Measurement strategies for the balloon deployed during Arctic flight time = 2 - 3 h Fig 4: Measurement strategy.

Balloon profiling EXperiment (ABEX) in June 2017. Photograph taken
during the test phase.

A: Single platform B: Collocated approach | "\ l 2x CGR4: terrestrial

Airborne Cloud Turbulence Observation

: T - A% 278.0
approach - profiles = temporal variability q 2% CMP3: solar + 3
D
Technical information: N I IMU IO 2775 gr
max. altitude = 1500 m ascend velocity <1 m s Ty N | 5770 ©
maximal payload =7 kg flighttime=3-4h QCiE A ” | T =
Additional probes: \ N7 - 276.5
* Fast temperature, humidity and wind probes N2

Fig 6: SMART-HELIOS (C) with 2x pyrgeometer CGR4 (1), 2x pyranometer Fig 7: Temperature map measured by the infrared
CMP22 (2), spectral solar radiance (3), infrared camera (4) and altimeter camera (4) from test flights in Winningen, Germany
(5). (10.2016).

for turbulence
* Spectral radiance to retrieve cloud optical
thickness and effective radius

Fig 2: Broadband radiation package (P1) for
tethered balloon.

4 Post processing and limitations

Single platform approach Collocated approach
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corresponding constructed series (green, blue, yellow).

* Correction of slow response measurements with deconvolution * Possible misinterpretation in estimation
after [1] of in.duced turbul.en.ce and cloud top * Reproducibility of inhomogeneities strongly depends on flight speed:
* Strong dependence on: cooling characteristics » Balloon (< 10 m s1) & helicopter (20 m s') 2 reproduction of real signal
1. Ascent/ descent rate of the instrument possible
2. Fitting/ smoothing of the data within the deconvolution » Aircraft (> 50 m s1) = restricted possibility to resolve inhomogeneities
routine * For perturbation frequencies < 0.5 Hz deconvolution works fine [1]

e Systematic error induced

4 Conclusion and outlook

Upcoming campaigns:

. i ic i in hi ' ' * Vertical profile of heating rate:
Systematic error is induced by slow response measurements in high dynamic observations. P g + Arctic Balloon profiling EXperiment (ABEX), June 2017 = tethered balloon

* Derivation of heating rates requires deconvolution. =» single platform approach . . 4 0b . . . dur |
* Slowly moving platforms (balloon and helicopter) are needed to study the cloud top * Cloud inhomogeneities: Arctic Cloud Observation Using airborne measurements during polar Day
> (ACLOUD), June 2017 - two aircraft
processes. collocated approach

* July 2017 on Graciosa, Azores > helicopter
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